

主要优点

- 保护、控制、测量及监视一体化
- 使用闪存技术 易干现场升级

用途

■ 风力发电机保护、控制、测量及监视

特性

保护和控制

- 相,中性点,接地及灵敏接地瞬时及延时过流 (50/51)
- **双方向保护**(67)
- 负序过流 (46)
- 快速过压 (59)
- 快速欠压 (27)
- 中性点过压 (59N)
- 辅助过压及欠压元件 (27X/59X)
- 电压不平衡 (60V)
- 过频 (810)
- 欠频 (81U)
- 用于有功及无功控制灵活的功率检测单元:过负荷,欠功率,逆功率 (32)
- 使用CAN网与外部PLC接口
- 断路器失灵 (50BF)
- 熔断器失灵
- 依据IEC 61131-3标准配置PLC逻辑
- 完全可配置的图形显示HMI接口
- 报警屏幕

规约

- Modbus RTU (串行端口)
- Modbus TCP/IP (以太网端口)
- 开放式CAN (仅CAN端口)

- CAN网接口
- 以太网诵讯
- ■分布式发电网装置

监视和测量

- 电流,电压,功率,功率因数及频率测量
- 电能测量
- 需量测量
- 跳闸回路监视
- 录波
- 数据记录
- ■事件顺序
- 自诊断

用户接口

- 大尺寸16×40字节图形显示屏或标准的4×20字节显示屏
- 使用穿梭键可进行灵活控制
- 前面板RS232端口
- 背后10/100 BaseTX以太网口用于与LAN网连接
- 背后CAN网端口(开放式CAN规约)
- 可选择的光纤100 Base FX以太网口(单配置或冗余配置)
- 可选择的后部RS485端口
- 1个已设置LED和15个可编程LED

性能

- 性能可靠结构坚实,可工作于海岸边风力较 大的农场
- 即便低负荷并有谐波存在时也可以确保测量 精度,从而提供功率(有功、无功)控制水平
- 多重高速保护段可快速稳定地断开与电网的 联接
- 综合保护,控制和测量系统
- 符合IEC/ANSI标准的高电磁兼容特性,多年 传输变电站的专家经验应用于风轮发电机

易干使用:

- 模块化设计易于维护,闪存技术易于现场升 级
- 功能强大的EnerVista PC软件,先进的HMI接口实现快速灵活访问

性能价格比优良的解决方案:

- ■通讯接□使用即插即用模块
- 电源模块以及以太网端口可选择冗余配置
- 可直接与最大电压输出为690V的发电机连接, 无需VT

描述

模块化设计的W650继电器作为一种具有综合 保护和控制功能的发电机控制装置, 尤其适用 于风轮发电机的保护和控制。依托650系列产 品的先进技术,W650采用32位处理器平台提 供完整的解决方案,该解决方案不仅可以满足 现有系统的需要,而且,它的诸多保护与控制 功能也可以满足未来系统的要求。W650使用 的是数字傅立叶变换算法,该算法不受谐波和 暂态的影响可以执行精确测量。W650集保护、 测量、控制及记录功能于一体, 所以使用 W650可以简化风轮发电机的系统设计。由于 W650采用模块化设计结构所以维护更加方便 快捷,无论是中型发电机还是大型发电机使用 W650均可以按实际需要选择增减配置保护和 控制功能,从而实现具有优良性能价格比的解 决方案。

从诵讯角度而言, W650与现有的解决方案相 比有很大的不同。装置最多可配置3个通讯端 口,可同时使用。前部的RS232端口可通过标 准电缆与笔记本电脑连接,借助于笔记本电脑 可以进行调试和维护。后部的CAN端口可连接 至上层控制,例如连接至PLC,这样PLC就可使 其与开放的CAN装置相兼容。后部还可以配置 一个RS485端□(可选),该端□与就地计算 机配合使用可以实现完善的记录功能。所有 W650装置都配备一个10/100 Base TX以太网端 □,通过该端□可访问大量的信息,如录波、 数据记录等等信息。光纤端口可选择配置,既 可以选择单配置也可以选择冗余配置。如果应 用场合根据环境要求(例如,在海边的工作环 境中,对装置的可靠性要求极高,使用W650 可节省总的使用成本)需要高性能,则应当选 择冗余配置。

保护

过流保护

瞬时和延时过流功能可用于相、中性点、接地、灵敏接地及负序过流保护。W650提供多种时间曲线,包括IEC、IEEE/ANSI、IAC、I²t、定时限、整流曲线及FlexCurve 用户曲线。相延时元件具有电压制动功能(此功能可闭锁)。电压制动功能的使用实现与其他设备的协调配合。

方向元件

方向功能可用于相、中性点、接地及灵敏接地 电流保护。中性点方向元件通过编程可以在零 序电压、极化电流或双极化条件下操作运行, 而且通过编程可实现双方向保护方案。

负序电流 (46)

负序电流的存在可导致发电机转子严重过热。该元件可设置为定时限(最长255s)或设置为l²t=K曲线模式(K为1至100之间的数值)。

电压保护

W650提供了如下电压保护功能:

- 相欠电压
- 相过电压
- 零序过电压
- 可使用一个附加元件执行母线电压保护功能

电压不平衡保护 (60V)

W650具有定时限电压不平衡功能,该功能基于负序和正序电压之比操作。动作值和延时时间的设置与其它的电压保护功能相同。

频率元件

W650配备过频及欠频保护元件。

下向功率 (32FP)

当正方向上的三相功率总幅值(正MW)在规 定时间内超过动作值,该元件将受到激励而动 作。

逆功率 (32RP)

当反方向上三相功率总幅值(负MW)在规定时间内超过动作值,该元件将动作。动作值在一次MW范围内选择设置。

低正向功率 (32LF)

如果正方向上的三相总功率 (MW) 在规定的时间内降低至动作值之下,该元件动作于报警。此动作值如上述逆功率保护动作值一样也是可编程的。此动作值应当设置为低于发电机正常操作运行时的负荷值。

功率元件(32FP, 32RP, 32LF) 只有在发电机 处于运行状态时才处于启用状态。每个功率元 件都分为两段,每一段都可以单独设置动作值 和动作时间。

控制

W650配备一个内置的功能强大的虚拟PLC。此PLC可根据IEC 61131-3语言依照功能框图来完成编程。根据订货选项的不同,W650可以配备8至32个数字输入及8至16个输出。所有数字输入都可使用单独的去抖动时间进行滤波,这样便可以满足用户的特殊要求。

此外,可编程的门槛值功能实现在相同的模块中使用不同的电压值(0至255V DC)。使用具有先进功能的"近似模拟"输入对所要求的门槛值进行编程而取得该功能。

EnerVista W650 Launchpad软件可对所有的联锁及开关顺序进行编程。这一编程过程通过EnerVista图形接口很容易完成,无需专业计算机编程知识。

另外,EnerVista W650设置软件可以为HMI接口 提供图形接口。监视、测量及报警屏幕只需点 击和拖动图标便可完成。随W650供货提供一 整套图标。

基本测量功能

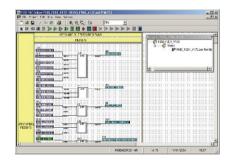
W650可测量如下值:

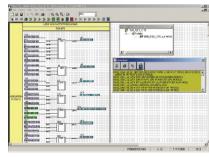
- 电流: la, lb, lc, ln, lg, lsg
- 母线及线路的相间电压及相对地电压: Van, Vbn, Vcn, Vab, Vbc, Vca, Vx.
- 有功功率 (每相及总功率): Wa, Wb, Wc,
- 无功功率(每相及总功率): VARa, VARb, VARc. VAR.
- 功率因数(每相及总功率因数)
- ■频率

这些信号可在就地显示,通过通讯方式也可在 远方访问。

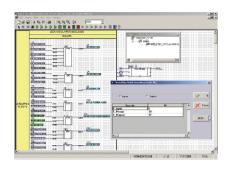
图形显示屏幕上的测量值

监视和测量


基本记录功能


W650的记录功能包括:

- 事件记录器可存储479条带时间标记的事件 (时间精度为1ms)
- 存储器中最多可存储20个单独的录波记录。 每次记录的容量依据所选的录波类型的不同 而不同(1M字节/最大录波数)
- 这些记录被存在非易失性存储器中,因而无需内部的电池临视或维护。


跳闸回路监视

W650可以选择配备两个监视回路,该两个回路用于断路器跳闸、合闸线圈以及断路器回路的监视。这些监视输入通过给上述相关回路施加电流来检测电流是否可以正确流入,并以此来监测电池电压水平以及跳闸和/或合闸回路的连续性。要实现此功能,推荐选用I/O板1选项2。

IEC61131-3要求的PLC程序顺序

用户接口

通讯

W650最多可以配备3个通讯端口,这些接口可以单独工作。对于要求高可靠性的应用场合,也可以冗余配置通讯端口。W650前部配备一个RS232串行端口,后部配备一个CAN网端口。

第三个通讯端口位于一个可拆卸的通讯卡上。 如果在将来出现新的技术标准,这种即插即用 卡可以随时更换。这给客户带来很大的方便。 第三个通讯端口的可用规约为ModBus TCP/IP。

通讯板1	COM2+CAN		COM1
С	前	jRS232+CAN	
М	前	jRS232+CAN	后RS485
通讯板2		COM	13
В		10/100 B	ase TX
С		10/100 Base TX	+100 Base FX
D		10/100 Base TX+万	C余100 Base FX

安全性

W650使用了闪存技术,易于未来升级。升级时无需更换继电器或给EPROMS升级。整定值、I/O配置等主要参数存储在非易失性存储器内。该存储器还具有备份功能,这样大大提高了装置的安全性

继电器装置中还配备了强制备份存储器,该存储器可以避免在升级过程中程序崩溃。这样又进一步提高了设备的安全性和可用性。

设置程序

使用基于Windows操作系统的 EnerVista W650 LaunchPad 设置软件可以进行对继电器信息的 完全访问,并可以进行PLC逻辑配置。

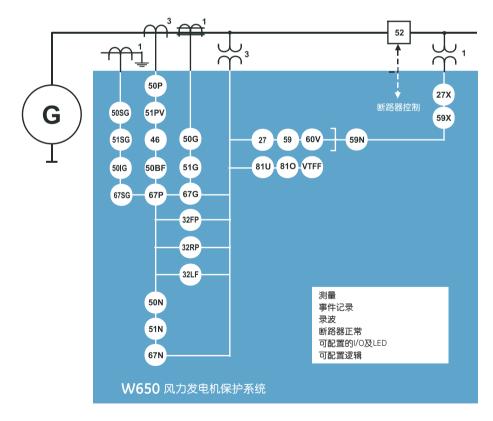
键盘及显示屏幕

W650可以配备2种显示屏幕。一种是文本型显示屏幕(4x20个字节),另一种是较大尺寸的

16x40个字节背光式图形显示屏幕。图形显示 屏幕具有更好的可视性,在所有光照条件下, 显示内容都能达到清晰可视。

LED

W650最多可配备15个可编程LED,分为绿色、黄色和红色。LED可以根据功能需要加注功能指示标签,这样,LED便可以对事件做出快速安全的指示,标签的使用使指示功能更加容易理解。W650还可额外配备5个较大尺寸的按键,这些按键均属于可编程按键。使用这些按键可以帮助那些频繁执行的控制功能(如断路器的分合)实现自动化功能。


穿梭键

W650配备一个易于控制的"穿梭键"和一个"取消键",这两个键的配合使W650的操作更加简单易行。这种控制方式与PC机的鼠标导航或是家庭型摄象机的穿梭键非常相仿。

W650技术规范指南

分布式发电系统管理装置是一种微机式继电器,它可以提供保护、控制、监视、测量以及完整的记录功能。此装置无需电压互感器(最大690V)便可直接与电气系统相连接。该装置能够使用CAN网规约与外部PLC通讯。该装置具有可选择配置的冗余电源。通讯功能可通过前端口和使用即插即用通讯卡实现。装置配备多种通讯规约,其中包括:Modbus®RTU、TCP/IP及开放式CAN。

功能框图

ANSI设备号及功能

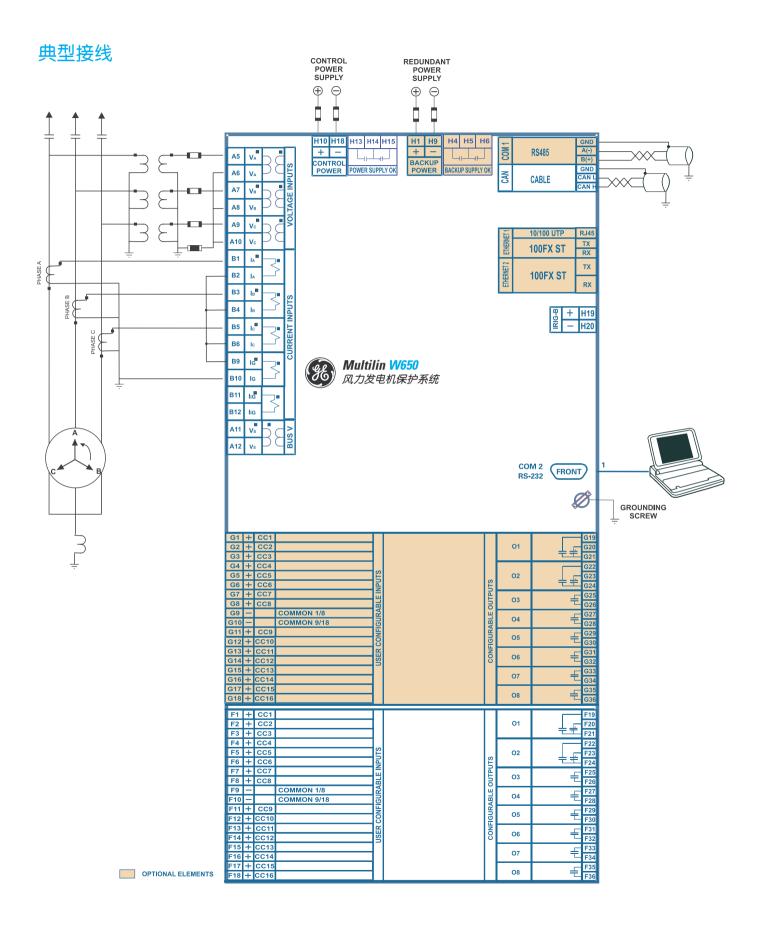
设备	保护功能
27/27X	母线/线路欠电压
32RP	逆功率
32FP	正向功率
32LF	低正向功率
46	负序延时过流
47	负序电压
50BF	断路器失灵
50P	相瞬时过流
50N	中性点瞬时过流
50G	接地瞬时过流
50SG	灵敏接地瞬时过流
50ISG	隔离接地瞬时过流
51P	相延时过流
51N	中性点延时过流
51G	接地延时过流
51SG	灵敏接地延时过流
51PV	电压制动过流
55	功率因数
59/59X	母线/线路过电压
59N	中性点过电压
67P	相方向过流
67N	中性点方向过流
67G	接地方向过流
67SG	灵敏接地方向过流
60V	电压不平衡
81 U/O	欠频率/过频率
VTFF	VT 熔断器失灵检测

W650 用户接口

保护:

- 相、中性点、接地和灵敏接地瞬时过流 (50P, 50N, 50G, 50SG, 50IG)
- 相、中性点、接地和灵敏接地延时过流 (51P, 51N, 51G, 51SG)
- 双/单方向保护 (67)
- 负序 (46)
- 快速过压 (59)
- 快速欠压 (27)
- 中性点过压 (59N)
- 附加电压功能 (27X, 59X)
- 电压不平衡 (60V)
- 欠频及过频 (81U, 810)
- 用于有功及无功控制的灵活功率单元(过负荷、欠功率及逆功率)

功率:


- 断路器失灵 (50BF)
- 熔断器失灵
- 依据IEC61131-3可配置的PLC逻辑
- ■可配置的图形显示屏幕
- 报警屏幕

监视和测量:

- 电流、电压、功率、功率因数及频率测量
- 电能测量
- 需量测量
- 跳闸回路监视
- 录波
- 数据记录
- 事件顺序
- 自诊断

HMI和通讯

- 用于保护操作信息显示的就地字符式LCD显示屏幕
- 用于间隔信息显示的就地图形LCD显示屏幕 应至少包括下列内容的可编程显示:
 - ■单线图显示
 - ■开关设备操作
 - 测量信息访问
 - 报警屏显示
 - 1/0 状态显示
- 开放式CAN规约与CAN网端□,最多2个串行端□,最大通讯速率为115 kb:前RS232和可选的后RS485端□。以太网卡配备100 Base F和10/100 Base T。

W650技术规范

が作曲。		L E1DL E1N E1C)
###		
### ### ### ### ### ### ### ### ### ##		
时间色樂器		
無け限: 最长900 sec (时间倍乘器:	
	定时限:	
超时: 大于或等于10.5倍动作值,±3.5%动作值 或±30 ms 瞬时过流(50PH, 50PL, 50N, 50G) 动作值: 读数的0.5% 10 mA, 最类10A 当10A8时为 1.5%读数 五时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 灵敏接地延时过流(51SG) 动作值: 读数的0.5% 10 mA, 最大10A 当10A8时为 1.5%读数 五的作曲: [EC, IEEE/ANSI, IAC, I*I.; 定时限,整流 器曲线,FlexCurve用户曲线 精度 动作值: 读数的0.5% 10 mA, 最大10A 当10A8时为 1.5%读数 五时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 灵敏接地瞬时过流(50SG) 动作值: 读数的0.5% 10 mA, 最大10A 当10A8时为 1.5%读数 五时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 灵敏接地瞬时过流(50SG) 动作值: 读数的0.5% 10 mA, 最大10A 当10A8时为 1.5%读数 五时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 对作值: 读数的0.5% 10 mA, 是大10A 当10A8时为 1.5%读数 五时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 相方向元件(67P) 极化: 医交电压 0.700 Voc 特性角: -90°+90°, 级差1° 中性点和接地方向元件(67N/67G) 极化电压: -90°+90°, 级差1° ①序元件(46) 动作值: 读数的1%、20 mA, 最类10A 当20A8计为读数的3% 五时: 大于等于1.05倍动作值,3.5%动作值或 30 ms 过电压元件(59P/S9NH/S9NL/59N) 相同电压的基准向量 30 m作值 3-700V,级差1V 97%动作值 或20方式: 瞬时或延时精度: 决数的1% 延时精度: 大于等于±1.05倍动作值,3.5%动作时间或 或型时精度: 大于等于±1.05倍动作值,3.5%动作时间或 或型的作值: 3-700V,级差1V 97%动作值 该位15元代(60V) 动作值: 20-65 Hz, 级差0.01 Hz 动作值: 35-00 Mric值 动作值。 20-65 Hz, 级差0 Mric值 动作值。 35-00 Mric值 动作值,35-00 Mric值 动作值	精度:	
	动作值:	
競討立流(SDH、5DN、5DN、5DN、5DN、5DN、5DN、5DN、5DN、5DN、5DN		
課的対流 (50PH, 50PL, 50N, 50G) 动作値: 005-160 A, 級差0.01 A 定时限: 000-900.00 秒, 級差10ms 精度 动作値: 读数的0.5% 10 mA, 最大10A 当510A时为 1.5% 读数 延时: 大干等干1.05倍动作值, ±3.5% 动作值或 ±30 ms 灵歓接地延时过流 (51SG) 动作値: 0,005-16 A in steps of 0.001 A 前度	延时:	
が作値。 0.05-160 A、 級差0.01 A		
定时限:		
精度 动作值: 读数的0.5% 10 mA,最大10A 当>10A8时为 1.5%读数 延时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 元(-2011 122-	
		0.00-900.00 例,级左10HS
無いた		凌数的0.5% 10 mΔ 是★10Δ
大子等于1.05倍动作值,±3.5%动作值或 ±30 ms	401 FIE:	
## 30 ms	延时:	
が作値: 0.005-16 Ain steps of 0.001 A IEC、IEEE/ANSI、IAC、i*t、定时限、整流 器曲线、FlexCurve用户曲线 精度		± 30 ms
部作曲线: IEC、IEEE/ANSI、IAC、i [†] t、定时限、整流 器曲线、FlexCurve用户曲线 精度 动作值: 读数的0.5% 10 mA、最大10A 当>10A8寸为 1.5%读数 が作值: 0,005-16 A、级差0.001 A 精度 动作值: 读数的 0.5% 10 mA、最大10A 当>10A8寸为 1.5%读数 延时: 大子等于1.05倍动作值、±3.5%动作值或 ±30 mS 相方向元件 (67P) 极化: 正交电压 极化电压: 0,700 Voc 特性角: -90°-+90°、级差1° 中性点和接地方向元件 (67N/67G) 极化: 零序电压、电流、双重 0,700 Voc 特性角: -90°-+90°、级差1° 中性点和接地方向元件 (67N/67G) 极化: 零序电压、电流、双重 0,700 Voc 特性角: -90°-+90°、级差1° 介序元件 (46) 动作值: 0,05-160.00 A、级差0.01 A 器曲线、FlexCurve用户曲线 精度: 动作值: 读数的1%、20 mA、最大10A 当>10A8寸为读数的3% 延时: 大于等于1.05倍动作值、±3.5%动作值或 30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压的基准向量 动作值: 3,700V、级差1 V 返回值: 97% 动作值 返回方式: 瞬时或延时 精度: 大手等于±1.05倍动作值,3.5%动作时间 或±30 ms 欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量 (通过 设置选择) 动作值: 3-700V、级差1 V 短回值: 97%动作值 返回方式: 瞬时或延时 精度: 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms 中电压元件 (60V) 动作值: 3,700V、级差 0.01 远回信: 20-65 Hz、级差0.01 Hz 动作值: 30 mHz 疑回信: 动作-30 mHz 疑回行式: 瞬时或延时 精度: 0.02Hz 延时精度: 大于等于±1.05倍动作值,3.5%动作时间 或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz、级差0.01 Hz 动作值: 30 mHz 疑时精度: 大于等于±1.05倍动作值,3.5%动作时间 或30 ms	灵敏接地延时过	流 (51SG)
器曲线,FlexCurve用户曲线 精度 动作值: 读数的0.5% 10 mA,最大10A 当>10AB对为 1.5%读数 还时: 大于等于1.05倍动作值, ±3.5%动作值或 ±30 mS 灵敏接地瞬时过流 (50SG) 动作值: 读数的 0.5% 10 mA,最大10A 当10AB对为 1.5%读数 延时: 大于等于1.05倍动作值, ±3.5%动作值或 ±30 mS 相方向元件 (67P) 极化: 正交电压 极化电压: 0-700 Vac 特性角: -90° +90°, 级差1° 中性点和接地方向元件 (67N/67G) 极化: 零序电压、电流、双重 0-700 Vac 特性角: -90° +90°, 级差2° 中性点和接地方向元件 (67N/67G) 动作值: 0.05-160.00 A,级差0.01 A 同序元件 (46) 动作值: 0.05-160.00 A,级差0.01 A 同序元件 (46) 动作值: (20	动作值:	0.005-16 A in steps of 0.001 A
精度 动作值: 读数的0.5% 10 mA,最大10A 当>10A的对为 1.5%读数 五30 ms 录数接地開的过流 (50SG) 动作值: 0.005-16 A,级差0.001 A 精度 动作值: 读数的 0.5% 10 mA,最大10A 当>10A的对为 1.5%读数 正时: 大于等于1.05倍动作值,±3.5%动作值或 ±3.0 ms 相方向元件 (67P) 极化: 正交电压 极化电压: 0-700 Voc 特性角: -90°-+90°, 级差1° 中性点和接地方向元件 (67N/67G) 极化: 世流、双重 少序元件 (46) 动作值: 读数的1%, 20 mA,最大10A 当>10A的力法数的3% 延时: 大于等于1.05倍动作值,±3.5%动作值或 动作值: 读数的1%, 20 mA,最大10A 当>10A的力法数的3% 延时: 大于等于1.05倍动作值,±3.5%动作值或 30 ms 过电压元件 (59P/59NH/59NL/59X) 相同电压的基准向量 动作值: 3-700V, 级差1 V 现值值: 97% 动作值 返回方式: 瞬时或延时精度: 大于等于±1.05倍动作值,3.5%动作时间或 近回值: 97%动作值 返回方式: 瞬时或延时精度: 大于等于±1.05倍动作值,3.5%动作时间或 近时精度: 大于等于+1.05倍动作值,3.5%动作时间或分的作值: 20 -65 Hz, 级差0.01 Hz 远回值: 如作16: 20 -65 Hz, 级差0.01 Hz 远回值: 如作16; 0.02 Hz 证时精度: 人于等于±1.05倍动作值,3.5% 动作时间或分析值。 3.5% 动作时间或分析值。 3.5% 动作时间或分析值。 20 -65 Hz, 级差0.01 Hz 远回值: 如作19 可以之时转度: 人于等于±1.05倍动作值,3.5% 动作时间或分析值,3.5% 动作时间或分析值。 3.5% 动作时间 3.5% 动作的间 3.5% 动作时间 3.5% 动作的间 3.5% 动作的问 3.5% 动	动作曲线:	
対・		器曲线,FlexCurve用户曲线
 当>10ABが为 1.5%读数 大子等于1.05倍动作値, ±3.5%动作値或 ±30 ms 		\=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	动作1 <u>值</u> :	
#30 ms 录献按地瞬时过流(50SG) 动作值:	2:1 0.→	
一切	延时:	
が作信: 0.005-16 A、级差0.001 A 精度	急動棒地廠時分	
精度 动作值: 读数的 0.5% 10 mA,最大10A 当510A时为 1.5%读数 起时: 大于等于1.05倍动作值,±3.5%动作值或 ±30 ms 相方向元件 (67P) 极化: 正交电压 切存电压: 970° +90°, 级差1° 中性点和接地方向元件 (67N/67G) 零序电压、电流、双重 0.700 Vac 特性角: 970° +90°, 级差1° 中性点和接地方向元件 (67N/67G) 物作值: 0.05-160.00 A,级差0.01 A 动作曲线: IEC, IEEE/ANSI, IAC, i¹t, 定时限, 整流器曲线、FlexCurve用户曲线 精度: 读数的1%、20 mA,最大10A 当510A时为读数的3% 延时: 大于等于1.05倍动作值,±3.5%动作值或 30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压的基准向量 动作值: 20 -65 Hz, 级差0.01 Hz 动作值: 3700v, 级差1 V 这回位方式: 瞬时或近时精度: 大于等于±1.05倍动作值,3.5%动作时间或 250 ms P文电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过设置选择)动作值: 3700v, 级差1 V 该回值: 约零%动作值 返回方式: 瞬时或延时精度: 大于等于±1.05倍动作值,3.5%动作时间或 ±30 ms P文电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过设置选择)动作值: 3700v, 级差1 V 该回值方式: 瞬时或近时精度: 579%动作值 返回方式: 瞬时或近时精度: 579%动作值 返回方式: 瞬时或近时精度: 579%动作值 返回方式: 瞬时或 50 ms 电压不平衡元件 (60V) 动作值: 20 -65 Hz, 级差0.01 Hz 远回位: 如作 -30 mHz 证回值: 3.5% 动作时间或 100 ms (取较大值) 社时精度: 人于等于±1.05倍动作值,3.5% 动作时间或 30 ms P交频率元件 (81U) 动作值: 20 -65 Hz, 级差0.01 Hz 动作值: 30 mHz 证例方式: 瞬时或近时,对作值: 20 -65 Hz, 级差0.01 Hz 动作值: 20 -65 Hz, 级差0.01 Hz 动作值: 30 mHz 证例方式: 瞬时或延时, 57等于±1.05倍动作值, 3.5% 动作时间或 30 ms		
対		0.000 10 円,収差0.001 円
無力10A时为 1.5%读数 延时: 大子等于1.05倍动作值, ±3.5%动作值或 生30 ms 相方向元件 (67P) 极化: 正交电压 极化电压: 0-700 Voc 特性角: 90°-+90°, 级差1° 中性点和接地方向元件 (67N/67G) 核化电压: 0-700 Voc 特性角: -90°-+90°, 级差1° 中性点和接地方向元件 (67N/67G) 核化电压: 0-700 Voc 特性角: -90°-+90°, 级差1° 列序元件 (46) 动作值: 0.05-160.00 A, 级差0.01 A IEC, IEEE/ANSI, IAC, i't, 定时限, 整流 器曲线, FlexCurve用户曲线 精度: 读数的1%, 20 mA, 量大10A 当>10A射为读数的3% 延时: 大于等于1.05倍动作值, ±3.5%动作值或 返回方式: 瞬时或延时 精度: 读数的3% 延时精度: 读数的3% 延时精度: 读数的3% 延时精度: 读数的3% 延时精度: 读数的3% 延时精度: 读数的3% 近时精度: 次于等于±1.05倍动作值, 3.5%动作时间或±30 ms 中压元件 (67V) 短见值: 3-700V, 级差 1 V 写应值: 3-700V, 级差 1 V 写觉选择) 动作值: 3-700V, 级差 1 V 写觉选择) 动作值: 3-700V, 级差 2 V 写常选择) 动作值: 3-700V, 级差 2 V 可能的特征,3.5%动作时间或近间注 数位的4位。 3.5%动作时间或近面5 映时 3.5%动作时间或30 ms 中压不平衡元件 (610) 动作值: 20-65 Hz, 级差0.01 Hz 动作130 mHz 返回方式: 瞬时或延时 动作值: 20-65 Hz, 级差0.01 Hz		读数的 0.5% 10 mA,最大10A
## 大于等于1.05倍动作值、±3.5%动作值或 ±30 ms ## 方向元件 (67P) 极化・	-2.,	当>10A时为 1.5%读数
相方の元件 (67P) 极化・ 正交电压 极化电压: 0-700 Voc 特性角: -90°-+90°, 级差1° 中性点和接地方向元件 (67N/67G) 极化: 零序电压 电流、双重 极化电压: 0-700 Voc 特性角: -90°-+90°, 级差1° 负序元件 (46) 动作值: 0.05-160.00 A, 级差0.01 A 动作曲线: IEC, IEEE/ANS1, IAC, i ⁻¹ t, 定时限, 整流 器曲线, FlexCurve用户曲线 精度: 读数的1%, 20 mA, 最大10A 当>10A时为读数的3% 延时: 大于等分NH/59NL/59X) 电压: 动作值: 3-700V, 级差1 V 返回值: 97% 动作值 返回方式: 瞬时或延时 精度: 读数的3% 延时精度: 一块等于±1.05倍动作值, 3.5%动作时间 或±30 ms 又电压元件 (27P/27X) 电压: 相同电压的基准向量 动作值: 3-700V, 级差1 V 返回值: 97% 动作值 返回方式: 瞬时或延时精度: 次数03 ms 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 电压不件(60V) 动作值: 3-700V, 级差1 V 这回值: 97%动作值 返回方式: 瞬时 或±30 ms 电压不平衡元件 (60V) 动作值: 20-65 Hz, 级差0.01 Hz 远回值: 动作-30 mHz 远回方式: 瞬时 就分m件值: 20-65 Hz, 级差0.01 Hz 远回指数: 1-3.5% 动作时间或100 ms (取较大值) 延时精度: 大于等于±1.05倍动作值, 3.5% 动作时间或100 ms (取较大值) 延时精度: 20-65 Hz, 级差0.01 Hz 远回值: 动作-30 mHz 远回值: 数作6+30 mHz 远回值: 数作6+30 mHz 远回值: 数件6+30 mHz 远回值: 数件6+30 mHz 远回值: 数件6+30 mHz 振时精度: 人于+30-61 Hz 远回值: 数件6+30 mHz	延时:	
級化: 正交电压		± 30 ms
級化电压: 0-700 Voc 特性角: -90°+90°, 級差1° 一性性点和接地方向元件 (67N/67G) 級化: 零序电压、电流、双重 0-700 Voc 特性角: -90°+90°, 级差1° ① -90°+90°, 级差1° ① -90°+90°, 级差1° ① -90°+90°, 级差1° ① -90°+90°, 级差1° ① -90°+90°, 级差1° ① -90°+90°, 级差1° ② -100 Mpt	相方向元件(67	
中性点和接地方向元件 (67N/67G) 极化。	极化:	正交电压
中性点和接地方向元件 (67N/67G) 极化。	极化电压:	0-700 Vac
級化・ 零序电压、电流、双重		
級化电压: 0-700 Vac 特性角: -90°-+90°, 级差1° 列序元件 (46) 动作值: 0.05-160.00 A, 级差0.01 A 动作曲线: 旧C, IEEE/ANSI, IAC, i't, 定时限, 整流 精度: 读数的1%, 20 mA, 最大10A 当510A时为读数的3% 延时: 大于等于1.05倍动作值, ±3.5%动作值或 30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压的基准向量 动作值: 3-700V, 级差1 V 97% 动作值 返回方式: 瞬时或延时 精度: 读数的3% 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间或 或±30 ms / 文电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量 (通过设置) 方式: 误数的3% 发时精度: 为30 ms / 文电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量 (通过设置) 方式: 误数的 3% 发证的情度: 3-700V, 级差1 V 97%动作值 或 97%动作值 或 97%动作值 或 97%动作值 或 93 ms / 文电压元件 (60V) 动作值: 3-700V, 级差 1 V 97%动作值 或 100方式: 誤时		
	极化电压:	
対作曲:	19127/01	
部件曲线: IEC、IEEE/ANSI、IAC、I・1、定时限、整流 器曲线、FlexCurve用户曲线 精度:		
精度: 动作值: 读数的1%, 20 mA, 最大10A 当>10A时为读数的3% 延时: 大于等于1.05倍动作值, ±3.5%动作值或 30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压场基准向量 动作值: 3-700V, 级差1V 返回值: 97% 动作值 返回方式: 瞬时或延时 精度: 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过 设置选择) 动作值: 3-700V, 级差1V 返回值: 97%动作值 返回方式: 瞬时 就度间值: 97%动作值 返回方式: 瞬时 就度间值: 97%动作值 返回方式: 瞬时 就度间值: 37%动作值 返回方式: 瞬时 就度间值: 37%动作值 或±30 ms 电压不平衡元件 (60V) 动作值: 0.0-900s, 级差0.01 处时; 0.0-900s, 级差0.01s 过频率元件 (810) 动作值: 动作值: 30 mHz 返回方式: 瞬时 精度: 1,3.5% 动作时间或100 ms (取较大值) 处时精度: 43.5% 动作时间或100 ms (取较大值) 对作值: 20 -65 Hz, 级差0.01 Hz 动作值: 20 -65 Hz, 级差0.01 Hz 动作值: 30 mHz 疑问值: 动作值+30 mHz 疑问值: 动作值+30 mHz		
精度: 动作值: 读数的1%, 20 mA, 最大10A 当>10A时为读数的3% 延时: 大于等于1.05倍动作值, ±3.5%动作值或 30 ms 过电压元件 (59P/59NH/59NL/59K) 电压: 相间电压的基准向量 动作值: 3-700V, 级差1 V 返回值: 97% 动作值 返回方式: 瞬时或延时 精度: 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过 设置选择) 动作值: 3-700V, 级差 1 V 级回值: 设置选择) 动作值: 3-700V, 级差 1 V 级回值: 3-700V, 级差 1 V 级回值: 3-7%动作值 该回方式: 瞬时 就应时有度: 3%读数 还时精度: 3%读数 证时有度: 3%读数 证时有度: 3%读数 证时有度: 3%读数 证时有度: 30ms 电压不平衡元件 (60V) 动作值: 20-65 hz, 级差0.01 hz 远回值: 该回方式: 瞬时 或 30 ms 欠地计算度: 人于等于±1.05倍动作值, 3.5%动作时间 或生时精度: 20-65 hz, 级差0.01 hz 动作值: 33 0 ms 欠频率元件 (81U) 动作值: 20-65 hz, 级差0.01 hz 动作通时有度: 大于等于±1.05倍动作值, 3.5% 动作时间 或 30 ms 欠频率元件 (81U) 动作值: 20-65 hz, 级差0.01 hz 动作值: 3.5% 动作时间或100 ms (取较大值) 证时精度: 大于等于±1.05倍动作值, 3.5% 动作时间 或 30 ms 欠频率元件 (81U) 动作值: 20-65 hz, 级差0.01 hz 动作值: 30 mhz 读回值: 动作-30 mhz 读回行式: 瞬时或延时 精度: 0.02 hz 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间 或 30 ms		ICC ICCC/ANICI IAC 124
动作值: 读数的196、20 mA,最大10A 当>10A时为读数的37% 延时: 大于等于1.05倍动作值,±3.5%动作值或30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压的基准向量 动作值: 3-700V,级差1 V 返回值: 97% 动作值 返回方式: 瞬时或延时精度: 读数的 3% 延时精度: 读数的 3% 延时精度: 大于等于±1.05倍动作值,3.5%动作时间或±30 ms 欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过设置选择) 动作值: 3-700V,级差1 V 返回值: 97%动作值 返回方式: 瞬时 3-700V,级差1 V 返回值: 97%动作值 返回方式: 瞬时 3-700V,级差1 V 返回值: 3%读数	动作 曲线:	
 当・10A財力读数的3% 大子等于1.05倍动作值, ±3.5%动作值或30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压的基准向量 3.700V, 级差1 V 级回值: 97% 动作值 该回方式: 瞬时或延时 请废: 读数的 3% 处时精度: 大于等于±1.05倍动作值, 3.5%动作时间或±30 ms 欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量 (通过设置选择) 动作值: 3.700V, 级差1 V 级置选择) 动作值: 3.700V, 级差1 V 级置选择) 动作值: 3.700V, 级差1 V 级回值: 97%动作值 级回方式: 瞬时精度: 大于等于±1.05倍动作值, 3.5%动作时间或±30 ms 电压不平衡元件 (60V) 小作值: 0.0-900s, 级差0.01 反时特度: 0.0-900s, 级差0.01s 过频率元件 (810) 动作值: 30m+2 级差0.01 Hz 级回值: 动作-30 mHz 级回方式: 瞬时精度: 43.5% 动作时间或100 ms (取较大值) 及时精度: ±3.5% 动作时间或100 ms (取较大值) 大于等于±1.05倍动作值, 3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz, 级差0.01 Hz 动作值: 20-65 Hz, 级差0.01 Hz 动作值: 3.35% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz, 级差0.01 Hz hz		
30 ms 过电压元件 (59P/59NH/59NL/59X) 电压: 相同电压的基准向量 动作值: 3-700V, 级差1 V 返回值: 97% 动作值 返回方式: 瞬时或延时 精度: 读数的 3% 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过 设置选择) 动作值: 3-700V, 级差1 V 返回值: 97%动作值 返回方式: 瞬时 精度: 为%动作值 返回方式: 瞬时 精度: 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 电压不单衡元件 (60V) 动作值: V2/V1比率的0-100%, 级差0.01 处时精度: V2/V1比率的0-100%, 级差0.01 延时精度: 0.0-90s, 级差0.01s. 过频率元件 (810) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回方式: 瞬时 精度: 0.02Hz 返回方式: 瞬时 动作值: 动作 - 30 mHz 返回方式: 瞬时 动作值: 数元 - 30 mHz 返回方式: 瞬时 动作值: 数元 - 30 mHz 返回方式: 瞬时 动作值: 20 - 65 Hz, 级差0.01 Hz 远回值: 动作 - 30 mHz 返回百元式: 瞬时 或 30 ms	精度:	器曲线,FlexCurve用户曲线
近电压元件 (59P/59NH/59NL/59X) 电压:	精度:	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A
 电压: 相同电压的基准向量	精度: 动作值:	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当>10A时为读数的3%
対作値:	精度: 动作值:	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当510A附为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或
返回信: 97% 动作值; 返回方式: 瞬时或延时; 精度: 读数的 3% 延时精度: 读数的 3% 及时精度: 大于等于±1.05倍动作值, 3.5%动作时间或±30 ms (大甲圧元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过设置选择) 动作值: 97%动作值 返回方式: 瞬时 精度: 3%读数 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间或±30 ms 电压不平衡元件 (60V) 动作值: 20~65 Hz, 级差0.01 Hz 返回方式: 瞬时 动作值: 动作-30 mHz 返回方式: 瞬时 精度: 力等于±1.05倍动作值, 3.5% 动作时间或口颌 数位的精度: 大于等于±1.05倍动作值, 3.5% 动作时间或问值: 动作-30 mHz 短回值: 动作-30 mHz 短时精度: ±3.5% 动作时间或100 ms (取较大值) 大于等于±1.05倍动作值, 3.5% 动作时间或30 ms (取较大值) 大于等于±1.05倍动作值, 3.5% 动作时间或700 ms (取较大值) 大时精度: ±3.5% 动作时间或100 ms (取较大值) 大时精度: ±3.5% 动作时间或100 ms (取较大值) 大时精度: ±3.5% 动作时间或100 ms (取较大值) 大时精度: ±3.5% 动作时间或100 ms (取较大值) 大时精度: 数0.02Hz 短回值: 动作值+30 mHz 返回值: 动作值+30 mHz 振行 (20-21z 延时精度: 人于±1.05倍动作值, 3.5%动作时间或 处时精度: 人子+±1.05倍动作值, 3.5%动作时间或 处时精度: 人子+±1.05倍动作值, 3.5%动作时间或 处时精度: 人子+±1.05倍动作值, 3.5%动作时间或	精度: 动作值: 延时:	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当>10A射为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或 30 ms
返回方式:	精度: 动作值: 延时: 过电压元件(59	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当>10A时为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或 30 ms PP/59NH/59NL/59X) 相间电压的基准向量
精度: 读数的 3% 及电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过设置选择) 动作值: 3-700V,级差 1 V 或回值: 97%动作值 返回方式: 瞬时 精度: 3%读数 延时精度: 大于等于±1.05倍动作值,3.5%动作时间或±30 ms 电压不平衡元件 (60V) 动作值: 20-65 Hz,级差0.01 Hz 返回值: 动作-30 mHz 返回值: 动作-30 mHz 返回值: 数作5 Hz,级差0.01 Hz 延时精度: 43.5% 动作时间或100 ms (取较大值)数时精度: 大于等于±1.05倍动作值,3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz,级差0.01 Hz 返回值: 数作 -30 mHz 返回指度: 大于等于±1.05倍动作值,3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz,级差0.01 Hz 延时精度: 大于等于±1.05倍动作值,3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 30 mHz 返回方式: 瞬时或近时 精度: 20-65 Hz,级差0.01 Hz 返回值: 动作值+30 mHz 返回方式: 瞬时或延时 精度: 0.02Hz 延时精度: 大于等于±1.05倍动作值,3.5%动作时间或60户式: 瞬时或延时	精度: 动作值: 延时: 过电压元件(59电压: 动作值:	器曲线,FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当510A时为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或30 ms 1P/59NH/59NL/59X) 相间电压的基准向量3-700V, 级差1 V
精度: 读数的 3% 及电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过设置选择) 动作值: 3-700V,级差 1 V 或回值: 97%动作值 返回方式: 瞬时 精度: 3%读数 延时精度: 大于等于±1.05倍动作值,3.5%动作时间或±30 ms 电压不平衡元件 (60V) 动作值: 20-65 Hz,级差0.01 Hz 返回值: 动作-30 mHz 返回值: 动作-30 mHz 返回值: 数作5 Hz,级差0.01 Hz 延时精度: 43.5% 动作时间或100 ms (取较大值)数时精度: 大于等于±1.05倍动作值,3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz,级差0.01 Hz 返回值: 数作 -30 mHz 返回指度: 大于等于±1.05倍动作值,3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20-65 Hz,级差0.01 Hz 延时精度: 大于等于±1.05倍动作值,3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 30 mHz 返回方式: 瞬时或近时 精度: 20-65 Hz,级差0.01 Hz 返回值: 动作值+30 mHz 返回方式: 瞬时或延时 精度: 0.02Hz 延时精度: 大于等于±1.05倍动作值,3.5%动作时间或60户式: 瞬时或延时	精度: 动作值: 延时: 过电压元件(59电压: 场价值: 返价值:	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当510A时为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V, 级差1 V 97% 动作值
	精度: 动作值: 延时: 过电压元件(59) 电压: 动作值: 返回方式:	器曲线,FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当>10A时为读数的3% 大干等于1.05倍动作值, ±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V, 级差1 V 97% 动作值 瞬时或延时
欠电压元件 (27P/27X) 电压: 相同电压或相对地电压的基准向量(通过 设置选择) 动作值: 3-700V, 级差 1 V 返回值: 97%动作值 返回方式: 瞬时 精度: 3%读数 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间或±30 ms 电压不平衡元件 (60V) 00-900s, 级差0.01s. 过时: 0.0-900s, 级差0.01s. 过频率元件 (81D) 30作值: 边口方式: 瞬时 精度: 0.02Hz 延时精度: ± 3.5% 动作时间或100 ms (取较大值) 延时精度: 大于等于±1.05倍动作值, 3.5% 动作时间或70 ms (取较大值) 次频率元件 (81U) 动作值-30 mHz 域回值: 动作值-30 mHz 域回值: 动作值-30 mHz 域回信: 30 mHz 瞬时或延时 精度: 0.02Hz 延时精度: 大于±1.05倍动作值, 3.5%动作时间或	精度: 动作值: 延时: 过电压元件(59 电压元件(59 电压元件(59 电压元件(59 电元元件(59 电元元) 表现 图 (50 电元元) 表现 图 (50 电元元)	器曲线,FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当10AB计为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或30 ms PP/59NH/59NL/59X) 相间电压的基准向量3-700V, 级差1 V 97% 动作值 瞬时或延时 读数的3%
电压: 相同电压或相对地电压的基准问量(通过 设置选择) 动作值: 3-700V, 级差 1 V 返回值: 97%动作值 返回方式: 瞬时 精度: 3%读数 延时精度: 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 电压不平衡元件 (60V) 动作值: V2/V1比率的0-100%, 级差 0.01 延时: 0.0-900s, 级差0.01s. 过频率元件 (81O) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回方式: 瞬时 精度: 0.02Hz 返回方式: 瞬时 精度: 0.02Hz 延时精度: ±3.5% 动作时间或100 ms (取较大值) 延时精度: 大于等于±1.05倍动作值, 3.5% 动作时间 或30 ms 【欠频率元件 (81U) 动作值: 20 - 65 Hz, 级差0.01 Hz 该回位: 或30 ms 【欠频率元件 (81U) 动作值: 20 - 65 Hz, 级差0.01 Hz 该回方式: 瞬时或近时 精度: 0.02Hz 返回位: 动作值-30 mHz 返回方式: 瞬时或延时 精度: 0.02Hz	精度: 动作值: 延时: 过电压元件(59 电压元件(59 电压元件(59 电压元件(59 电元元件(59 电元元) 表现 图 (50 电元元) 表现 图 (50 电元元)	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当510A时为读数的3% 大于等于1.05倍动作值, ±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V, 级差1V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值, 3.5%动作时间
设置选择	精度: 动作值: 延时: 过电压元件(59电压: 动作值: 返回值: 返回方式: 精度: 延时精度:	器曲线, FlexCurve用户曲线 读数的1%, 20 mA, 最大10A 当>10A时为读数的3% 大干等于1.05倍动作值, ±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V, 级差1 V 97% 动作值 瞬时或延时 读数的3% 大干等于±1.05倍动作值, 3.5%动作时间 或±30 ms
动作值: 3-700V, 級差 1 V	精度: 动作值: 延时: 过电压元件(59电压: 动作值: 边间压: 动作值: 边间方式: 精度: 灰电压元件(27	器曲线,FlexCurve用户曲线 读教的1%,20 mA,最大10A 当>10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms
返回信: 97%动作值 返回方式: 舞时 請度: 35%读数 大于等于±1.05倍动作值, 3.5%动作时间 或±30 ms 电压不平衡元件 (60V) 动作值: V2/V1比率的0-100%, 级差 0.01	精度: 动作值: 延时: 过电压元件(59电压: 动作值: 边间压: 动作值: 边间方式: 精度: 灰电压元件(27	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当510A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过
返回方式:	精度: 动作值: 延时: 过电压元件(59电压元件(59电压元件(59电压元件(59电压元件(59电压: 返回方式: 精度: 延时精度: 欠电压元件(27电压:	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当510A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700v,级差1 v 97% 动作值 瞬时或延时 读数的 3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过 设置选择)
精度: 3%读数 延时精度: 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms 电压不平衡元件 (60V) 动作值:	精度: 动作值: 延时: 过电压元件(59电压: 电压:值: 动原回值: 返回方式: 精度: 欠电压元件(27电压: 动作值:	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V
	精度: 动作值: 延时: 过电压元件(55年)返返度证明: 过电压元件(55年)返返度证明: 过电压作值: 证明: 证明: 证明: 证明: 证明: 证明: 证明: 证明: 证明: 证明	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当510A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值
电压不平衡元件 (60V) 动作值: 处2/V1比率的0-100%, 级差 0.01 处时: 0.0-900s, 级差 0.01s. 过频率元件 (810) 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回值: 动作 - 30 mHz 返回方式: 瞬时 或 30 ms / 频率元件 (81U) 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回值: 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回值: 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回值: 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回值: 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回位: 动作值: 20 - 65 Hz, 级差 0.01 Hz 返回位: 动作值+ 30 mHz 返回方式: 瞬时或延时 精度: 002Hz 延时精度: 大于± 1.05倍动作值,3.5%动作时间或	精度: 动作值: 延时: 过电压元件(59 电压元件(59 电压元件(59 电压元件(59 电压元件(27 电压元件(27 电压元件(27 电压元件(27 电压元件(27 电压元件(27	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当510A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时或证明
対作値: 対が作値: 対抗	精度: 动班 : 过电压工件(59年)电压工件(59年)电压工件(59年)电压工件(59年)电压工件(59年)电压工作(6月)式:精度: 欠电压: 动返返疗管理、	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时式。105倍动作值,3.5%动作时间 或±30 ms
 延射: 0.0-900s, 级差0.01s. 过频率元件 (810) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回方式: 誤財 精度: 0.02Hz 延时精度: ±3.5% 动作时间或100 ms (取较大值) 延时精度: 大于等于±1.05倍动作值, 3.5% 动作时间或30 ms 欠频率元件 (81U) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回值: 动作值+30 mHz 返回方式: 誤时或延时 精度: 0.02Hz 延时精度: 大于±1.05倍动作值, 3.5%动作时间或 	精度: 动比: 过电压元件(59 电压元件(59 电压元件(59 电压元件(59 电压元件(59 电压元件(59 电压元件(27 电压元件(27 电压元件(27 电压元件(27 电压元件(27 电压元件(27	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当510A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相同电压的基准向量 3-700V,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms P/27X) 相同电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时或30 ms
対频率元件 (810)	精度: 並申压工件(59年)	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10ABサ为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或类30 ms
が作値: 20 - 65 Hz, 级差0.01 Hz 返回値: 効作 - 30 mHz 返回方式: 瞬时 精度: 0.02Hz 延时精度: 大于等于±1.05倍动作值, 3.5% 动作时间 或 30 ms 欠频率元件 (81U) 动作値: 20 - 65 Hz, 级差0.01 Hz 返回値: 动作値30 mHz 返回方式: 瞬时或延时 精度: 0.02Hz 延时精度: 大于±1.05倍动作值, 3.5%动作时间或	精度: 过电压工件(59年)电压压作(59年)电压压作(59年)电压压停息: 电压压停息式: 精度 大电压: 动返返度时期 数返返度时期 变形, 在下午(27年), 本中国自己, 黄亚叶中国自己, 黄亚叶中国自己, 黄亚叶中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 第27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01
返回值: 动作 - 30 mHz 返回方式: 瞬时 精度: 0.02Hz 延时精度: ±3.5% 动作时间或100 ms(取较大值) 大于等于±1.05倍动作值,3.5% 动作时间 或 30 ms	精度: 动班: 过电压: 过电压: 位。 这返转时: 过电压: 位。 这返转时: 过电压: 位。 位。 位。 位。 位。 过度: 动返返转题: 一个电压: 动返返转题: 中面: 动返返转题: 中面: 中面: 中面: 中面: 中面: 中面: 中面: 中面: 中面: 中面	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相同电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相同电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 或为作值 瞬时 或为的作值 段时 5%读数 大于等于±1.05倍动作值,3.5%动作时间 或类30 ms IP/27X) 15%动作值 瞬时 5%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X上,105倍动作值,3.5%动作时间 或±30 ms IP/27X上,105倍动作值,3.5%动作时间 或±30 ms IP/27X上,105倍动作值,3.5%动作时间 或±30 ms IP/27X上,105倍动作值,3.5%动作时间 或±30 ms IP/27X上来的0-100%,级差0.01 0.0-900s,级差0.01s
返回方式:	精度: 动比: 过电压二件(59 电压二件(59 电压二件(59 电压二件(59 电压二件(59 电压二件(59 电压二件(59 电压二件(59 电压二件(27 动返返精度); 电压二件(27 动返返精度); 电压二件(27 动返返精度); 电压二件(27	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700v,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700v,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms ICOV) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01s
精度: 0.02Hz 延时精度: ±3.5% 动作时间或100 ms (取较大值)	精度: 过电压工件(55) 电压工件(55) 电压工件(55) 电压工件(55) 电压工件(55) 电压工件(55) 电压工件(66) 元,精压工作(66) 元,精压工作(66) 元,精延时,有压压值。元式:精延时,有压值。元式:精延时,有压值。元十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或*30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01s. O) 20 - 65 Hz,级差0.01 Hz
延时精度: ±3.5% 动作时间或100 ms (取较大值)	精度: 过电动返返精延	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/S9NH/S9NL/S9X) 相同电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的 3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/P27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 或类30 ms IP/SPX) 相同电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 或±30 ms IP/STX) (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01 Hz 动作-30 mHz
延时補度: 大于等于±1.05倍动作值,3.5% 动作时间 或 30 ms 欠频率元件 (81U) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回值: 动作值+30 mHz 返回方式: 瞬时或延时 精度: 0.024z 延时補度: 大于±1.05倍动作值,3.5%动作时间或	精度: 动性: 过电压: 位值: 过电压: 位值: 位值: 位值: 位面方: 有效: 位面方: 有效: 位面方: 有效: 位面方: 有效: 一种: 一种: 一种: 一种: 一种: 一种: 一种: 一种: 一种: 一种	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10ABH为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01 H2 动作-30 mHz 瞬时
或 30 ms 欠频率元件(81U) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回值: 动作值-30 mHz 返回方式: 輟时或延时 精度: 0.02 Hz 延时精度: 大于±1.05倍动作值,3.5%动作时间或	精度: 过电压(59) 证电压(59) 证电压(59) 证电压(59) 证电压(60) 证电压(60) 证电压(60) 证明压压(60) 证明正明正明正明正明正明正明正明正明正明正明正明正明正明正明正明正明正明正明正	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10AB†为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01s. O) 20 - 65 Hz,级差0.01 Hz 动作 - 30 mHz 瞬时 0.02Hz
欠频率元件 (81U) 动作值: 20 - 65 Hz, 级差0.01 Hz 返回值: 动作值-30 mHz 返回方式: 瞬时或延时 精度: 0.02 Hz 延时精度: 大于±1.05倍动作值, 3.5%动作时间或	精度: 拉电动返返精延 大电话: 拉电动返返精延 大电话: 在信信: 大电话: 在信: 在信: 本信: 本信: 本信: 本信: 本信: 本信	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/S9NH/S9NL/S9X) 相同电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的 3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/P27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/S9X) (60V) (97%动作值 瞬时 3%读数 (60V) (2V1/比上率的0-100%,级差0.01 0.0-900s,级差0.01 Hz 动作-30 mHz 瞬时 0.02Hz 43.5% 动作时间或100 ms(取较大值)
动作值: 20-65 Hz, 级差0.01 Hz 返回值: 动作值-30 mHz 返回方式: 瞬时或延时 精度: 0.02Hz 延时精度: 大于±1.05倍动作值, 3.5%动作时间或	精度: 拉电动返返精延 大电话: 拉电动返返精延 大电话: 在信信: 大电话: 在信: 在信: 本信: 本信: 本信: 本信: 本信: 本信	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的 3% 大于等于±1.05倍动作值,3.5%动作时间或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过设置选择) 3-700V,级差1V 97%动作值 瞬时或延时 该型选择) 3-700V,级差1V 97%动作值 瞬时或30 ms E/27X) 自用电压或相对地电压的基准向量(通过设置选择) 3-700V,级差1V 97%动作值 瞬时 30-700V,级差 0.01 0.0-900s,级差0.01 kg 0.0-100%,级差 0.01 0.0-900s,级差0.01 kg 0.0-100%,级差 0.01 0.0-900s,级差0.01 kg 0.0-100%,级差 0.01 0.0-900s,级差 0.01 kg 0.0-100%,级差 0.01 0.0-900s,级差 0.01 kg 0.0-100%,级差 0.01 0.0-900s,级差 0.01 kg 0.0-100%,级差 0.01 kg 0.0-100%,级差 0.01 kg 0.0-100%,0.9-105 kg 0.0-105 kg 0.0-1
返回值: 动作值-30 mH2 返回方式: 瞬时或延时 精度: 0.02Hz 延时精度: 大于±1.05倍动作值,3.5%动作时间或	精放 延 电压作 (59) 计 原 (59) 的 原 (59) 计 原 (59) 的 原 (59) 计 原 (59) 和	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当510A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01s O) 20 -65 Hz,级差0.01 Hz 动作 -30 mHz 瞬时 0.02Hz ±3.5% 动作时间或100 ms(取较大值) 大于等于±1.05倍动作值,3.5% 动作时间 或30 ms
返回方式:	精度: 过电动返返精延	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当>10AB†为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms P/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1 V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间或±30 ms P/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1 V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01s. O) 20 - 65 Hz,级差0.01 Hz 动作 - 30 mHz 瞬时 0.02Hz ±3.5% 动作时间或100 ms(取较大值)大于等于±1.05倍动作值,3.5% 动作时间或30 ms
延时精度: 大于±1.05倍动作值,3.5%动作时间或	精度: 过电动返返精延	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相同电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 4目间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差 0.01 0.0-900s,级差0.01s. O) 20 - 65 Hz,级差0.01 Hz 动作自 域3 0 ms
	精度: 过电动返返精延 欠电 动返返精延 欠电 品质 医二性 (59 电压作回向方:精 压工件 (27 动返返精延 欠电 动返返精延 医二种 医二位 (27 动返返精延 医二种	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10ABH为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01 Hz 动作 -30 mHz 瞬时 0.02Hz ±3.5% 动作时间或100 ms(取较大值) 大于等于±1.05倍动作值,3.5% 动作时间 或30 ms
± 30 ms	精动 延 电压作 (59) 电压 (59) 电压 (59) 电压作回回度时 电压 作回回度时 电压 作回回度时 电压 作回回度时 压作时频作回回度时精 压症 值值方:精 不值:率值值方:精 率值值方:精 率值值方:	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10A时为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相同电压的基准向量 3-700V,级差1V 97% 动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相同电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms ICOV) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01s. O) 20 - 65 Hz,级差0.01 Hz 动作。3.5% 动作时间或30 ms IV) 20 - 65 Hz,级差0.01 Hz 动作值,30 mbz 瞬时 或30 ms IV) 20 - 65 Hz,级差0.01 Hz 动作值,3.5% 动作时间或30 ms IV) 20 - 65 Hz,级差0.01 Hz 动作值,30 mbz 瞬时或30 ms IV) 20 - 65 Hz,级差0.01 Hz 动作值,30 mHz 瞬时或30 ms IV) 20 - 65 Hz,级差0.01 Hz 动作值,30 mbz 瞬时或20 mbz 脚时或30 mbz IV) 20 - 65 Hz,级差0.01 Hz 动作值,30 mbz 瞬时或20 mbz IV) 20 - 65 Hz,级差0.01 Hz 动作值,30 mbz 瞬时或延时 0.02Hz
	精动 延 过电动返返精延 欠电 动返返精延 医二种 (55) 电压作(55) 电压作(55) 电压作回回度时 电压 作回回度时 电压 作回回度时 电压 作回回度时 压作时频作回回度时时 频作回回度时时 频作回回度时时 频作回回方:精精 不宜:"年值信式:'唐'度,一个(81) 中国,一个(81) 中国,一个(8	器曲线,FlexCurve用户曲线 读数的1%,20 mA,最大10A 当10ABH为读数的3% 大于等于1.05倍动作值,±3.5%动作值或 30 ms IP/59NH/59NL/59X) 相间电压的基准向量 3-700V,级差1V 97%动作值 瞬时或延时 读数的3% 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms IP/27X) 相间电压或相对地电压的基准向量(通过 设置选择) 3-700V,级差1V 97%动作值 瞬时或数时 500V,级差1V 97%动作值 瞬时 3%读数 大于等于±1.05倍动作值,3.5%动作时间 或±30 ms (60V) V2/V1比率的0-100%,级差0.01 0.0-900s,级差0.01 Hz 动作-30 mHz 瞬时 0.02Hz ±3.5% 动作时间或100 ms(取较大值) 大于等于±1.05倍动作值,3.5% 动作时间 或30 ms U) 20-65 Hz,级差0.01 Hz 动作-30 mHz 瞬时 0.02Hz ±3.5% 动作时间或100 ms(取较大值) 大于等于±1.05倍动作值,3.5% 动作时间 或30 ms U) 20-65 Hz,级差0.01 Hz 动作值+30 mHz 瞬时或延时 0.02Hz 大于±1.05倍动作值,3.5%动作时间或 3.5%动作时间或

```
保护

逆功率元件(32RP)

动作値: -10000.00-0.00MW(一次値), 级差0.01 MW

延时: 0.00-900.005, 级差0.01 s

延时精度: ±3.5%动作时间或30 ms (取较大値)

精度: 3%读数

正向功率元件(32FP)

动作値: 0.00-+10000.00MW(一次値), 级差0.01 MW

延时: 0.00-900.00 s, 级差10 ms

精度: 3%

低正向功率元件(32LF)

动作値: 0.00-+10000.00MW(一次値), 级差0.01 MW

延时: 0.00-900.00 s, 级差10ms

精度: 3%

透問

整形显示: 128×240 像素

16×40 字符

文本显示: 4行×20字符

依据IEC61131-3执行的虚拟PLC逻辑

功能框图
```

VT 失灵	LLO THE GAP.
通过标称可闭锁」	広切能
跳/合闸线圈监	W
检测跳闸及合闸[
波形捕捉	
数据通道:	4个电流、4个电压、16个数字状态
采样:	4、8、16、32或64个采样/周波
触发源:	动作/跳闸/返回、控制/报警事件、逻辑
	输入或手动命令
触发位置:	5%-95%
存储容量:	最多20个录波记录
	录波记录可通过设置来连接
	采样速度可编程为4,8,16,32或64次/
	周波

则里	
电压:	全范围内1-690 Vac (线路间)
电压:	1A和5A时为0.05 Aac-150 Aac
频率:	20-65 Hz

电源	
选项:	
低范围:	DC: 24-48V, ±20%
高范围:	DC: 110-250V, ±20%
	AC: 120-230V, ±20%
功率消耗:	典型20W, 最大25W
失压保持时间:	带单电源时为100 ms

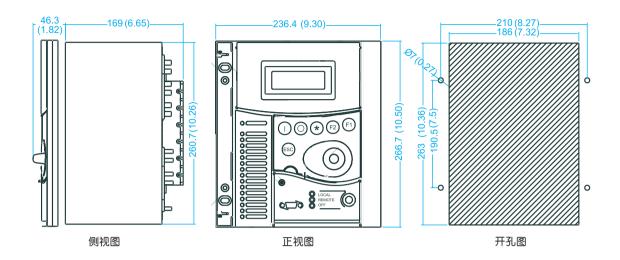
通讯	
RS232:	前端口 (最大115 kbps)
CAN:	125或500 kHz
RS485:	可选的后端口(最大115 kpbs)
以太网端口:	100 BaseFX或冗余100 BaseFX 10/100 BaseTX

环境		
温度:		
存储:	-40°C至+80°C	
运行:	-10°C至+55°C(*)	
湿度: 最大 95%,	无凝露	
(*) 坐得度到法: 7)℃显示屏幕正常显示,	温度到达18500时中
源正常供电	2 企业小开带正市业小,	温度到达+05 Cin 4

机械特性	
· 1/2 19"机箱, 6U	
·防护等级IP52 (IEC 529)	

输入	
电流输入	
测量:	电流互感器
载流量:	20 A持续
	1 s内500 A
功率消耗:	当5 Aac时, <0.15 VA
电压输入	
测量:	电压互感器
最在持续电压:	700 Vac, 线对地
线性测量范围:	线对线,最大为690 Vac
功率消耗:	400 Vac 时, < 0.15 VA
数字输入	
隔离:	光电隔离分成8组输入带公共端
范围:	1-255 Vdc门槛值(可编程), 级差1 V
电阻:	>100 kΩ
输出	
隔离:	电隔离 (输出继电器)
接点材料:	不含Cd的AgNiO,其他材料受到RoHS指令
	禁止
负荷:	16 Adc 持续
闭合载荷电流:	60 A, 持续1 sec
断开回路:	当125 Vdc, L/R=40 ms时, 为0.3 A感性负载
輸出	
输出接点	

柳山按从	
绝缘:	电气绝缘 (输出继电器)
接点材料:	银镍氧化材料,无隔和其他受RoHS禁止的
	材料
负荷:	16 Adc连续
接通及载荷容量:	60 Adc持续1s
断开回路:	0.3 A感性负载, 在125 Vdc时的时间常数为
	40ms
型试实验	
型试实验	
本装置的设计满足	P当今最高的技术要求,满足ANSI C37.90和
IEC国际标准。	
EMC	
IEC 1000-4-8:	4级 工频磁场抗干扰
IEC 1000-4-10:	5级 阳尼振荡场抗干扰


EMC	
IEC 1000-4-8:	4级 工频磁场抗干扰
IEC 1000-4-10:	5级 阻尼振荡场抗干扰
IEC 1000-4-3:	3级 辐射RF抗干扰试验
IEC 1000-4-2	4级 静电放电抗干扰
IEC 1000-4-16	4级 传导共模0-150 kHz抗干扰
IEC 1000-4-5	4级, 浪涌抗干扰
IEC 1000-4-12	3级 1 MHz 振荡波抗干扰
IEC 1000-4-4	4级 电气快速暂态脉冲抗干扰
IEC 1000-4-6	3级 RFSI起的传导干扰
IEC 60255-25	A级 传导和辐射发射
产品	
IEC 60255-5	2 kV 绝缘试验
IEC 60255-5	5 kV 0.5J 脉冲试验
IEC 60255-11	100 ms电源中断
机械	
IEC 60255-21-1	1级正弦曲线振动
IEC 60255-21-2	1级振动
IEC 60255-21-2	地震1级

IEC 60255-21-2	地震1级
认证	
CE:	符合EN/IEC 60255, 61010
ISO.	依据ISO9001设计生产

11 lbs (5 kgs)
13.2 lbs (6 kgs)
30x40x40 cm (WxHxD)
将插入式端子使用螺丝固定在连接器上并
把连接器固定在外壳上
最大撞击重量60g

^{*}技术要求改变不预先通知

尺寸

订货

请在下表中选择基本的模块及所需的参数:

