

- Powerful automation controller eliminates the need for separate substation programmable logic controller
- High-end load shedding with multiple stages of frequency and voltage retains system stability after disturbances
- Fast optimal load shedding executed within 20 ms minimizes process outages and costs associated with system downtime
- Intelligently sheds loads to maintain system/process integrity
- Highly customizable and scalable, integrating easily into most industrial plants with new or existing EMS/SCADA
- Customizable annunciator panel capable of handling up to 288 alarms eliminates the need for a separate panel
- High-end fault and disturbance recording eliminates the need for digital fault or disturbance recorders
- Synchronized phasor information according to IEEE ${ }^{\oplus}$ C37.118 standard for detection of system instability
- Increase network availability by reducing failover time to zero through IEC ${ }^{\circledR}$ 62439-3 "PRP" support
- HMI with pre-configured and customizable displays including real-time bay control, metering, fast load shed reports, equipment status, fault and event recording

APPLICATIONS

- Advanced bay control/monitoring (6 breakers and 30 disconnects)
- Fast, power-balance load shed
- Frequency and voltage load shed
- Substation alarm concentrator, annunciator, and controller
- Advanced automation schemes such as bus transfer
- Stand-alone breaker protection and monitoring

FEATURES

Bay Protection \& Control

- Dedicated automation controller with 4000 lines of logic
- Powerful math, control and boolean operators
- 10 stages of under/over frequency protection for load shedding
- 4 stages of rate-of-change-of frequency for load shedding
- 6 stages of undervoltage elements for load shedding
- Dedicated protection logic at 1 msec execution rate
- Dedicated HMI for breaker and disconnect control
- Multi-breaker synchrocheck with single/three pole autoreclosing
- Dual breaker failure protection
- Direct and tele-protection elements using inter-relay communications

Bay Monitoring and Metering

- CT and VT monitoring
- Metering: current, voltage, frequency, power, energy and phasors as per IEEE C37.118
- Fault recorder: 256 samples/cycle, 30 sec of storage capacity
- Disturbance recorder: 1 sample/cycle, 5 min of storage capacity
- Event recorder: 8000 time-tagged events, with 0.5 ms scan of digital inputs
- Comprehensive display of metering, phasors, maintenance and fault information in the front panel

Fast Load Shed

- Fast optimal load shedding executed within 20 ms
- Intelligently sheds only necessary loads per customized priorities
- Highly customizable and scalable, integrating easily into most industrial plants with new or existing EMS/SCADA
- Optional stand-alone system with local HMI for viewing dedicated system status and reports
- Suitable for small or large industrial systems without re-design
- Easy-to-use system where settings and priorities can be configured within seconds

Communications

- IEC61850, DNP3, Modbus® RTU, Modbus TCP/IP, IEC 60870-5-104, PRP
- Three independently configurable IP's with failover features
- Inter-relay communication based on standard protocols
- Front USB for maintenance and downloading of records and events

Ease-of-Use and Security

- Graphical protection and automation logic programming
- Real-time logic monitoring to simplify commissioning and troubleshooting
- EnerVista ${ }^{\text {TM }}$ Launchpad service and update notification toolset keeps documents and software up-to-date
- EnerVista Integrator providing easy integration of data (SCADA or DCS) into new or existing systems

Advanced Bay Control

The C90 plus bay control or monitoring functionality is intended for high-end bay control applications typically used in transmission installations, where a larger quantity of I/O, advanced protection and control functionality and an advanced HMI is desired.

Bay Control Protection Functions

Overcurrent

The $\mathrm{C} 90^{\text {Plus }}$ provides multiple stages of overcurrent functions for phase, neutral and ground. Overcurrent functions include:

- Instantaneous and timed overcurrent elements for phase, neutral, ground and negative sequence protection
- Directional supervision is available for phase neutral and negative sequence elements
- Time O/C elements can individually be set to use IEEE, IEC or custom FlexCurves ${ }^{\text {TM }}$

Over and Under Voltage Protection

Long lines under lightly loaded conditions or no-load or sudden loss of power may experience voltages exceeding the rated per unit voltage level of the line. Use the phase overvoltage element of the C90 Plus to initiate a local trip as well as a remote trip using direct transfer trip. The C90 Plus also provides
additional voltage functions including neutral overvoltage, negative sequence overvoltage and phase undervoltage. The phase undervoltage can be programmed as definite time or inverse time.

Over and Under Frequency Protection

The multiple stages of under and over frequency elements can be used to initiate load shedding or remedial action schemes or frequency-based load restoration schemes during lack of generation in the network or due to sudden load drops. Combined with the advanced automation capabilities of the C90 Plus, flexible, special protection schemes, advanced load shedding and load restoration schemes can be built.

Functional Block Diagram

ANSI ${ }^{\circledR}$ Device Numbers \& Functions

Device Number	Function
25	Synchronism Check
27 P	Phase Undervoltage
$27 X$	Auxiliary Undervoltage
50 BF	Breaker Failure
50 DD	Current Disturbance Detector
50 G	Ground Instantaneous Overcurrent
50 N	Neutral Instantaneous Overcurrent
50 P	Phase Instantaneous Overcurrent

Device Number	Function
$50 _2$	Negative Sequence Instantaneous Overcurrent
51 G	Ground Time Overcurrent
51 N	Neutral Time Overcurrent
51 P	Phase Time Overcurrent
$51 _2$	Negative Sequence Time Overcurrent
52	AC Circuit Breaker
59 N	Neutral Overvoltage

Device Number	Function
$59 P$	Phase Overvoltage
$59 X$	Auxiliary Overvoltage
$59 _2$	Negative Sequence Overvoltage
67 N	Neutral Directional Overcurrent
67 P	Phase Directional Overcurrent
$67 _2$	Negative Sequence Directional Overcurrent
79	Automatic Recloser
81 U/O	Under and Over Frequency

Small Signal Oscillation Functionality

A new protection element called the small signal oscillation detection is added to the product. Modern power systems are becoming increasingly interconnected to each other for the benefits of increased reliability, reduced operation cost, improved power quality and reduced necessary spinning reserve. With the increasingly large interconnected power systems some technical challenges also become apparent. One of these challenges is the inter-area low frequency oscillations that are a major threat to reliable operations of large-scale power systems. Inter-area oscillations not only limit the amount of power transfer, but also threaten the system security and equilibrium, as they may lead to system instability and cascading outages.

Therefore, it is essential to identify the characteristics of the inter-area oscillations, including oscillation frequency and damping ratio, so that proper actions can be taken based on the results. This is required to improve the system damping and maintain
stability in the power system. The C90 Plus can detect these inter-area oscillations and provide an alarm or even a trip signal to prevent a large-scale system disturbance.

Bay Configurations

The $\mathbf{C 9} 0^{\text {Plus }}$ has 12 pre-configured bay single line diagrams and corresponding controls for each of the bay equipment. Users can also program their own single line diagrams using the ANSI/IEC library symbols provided in the EnerVista setup program.

Breaker-and-Half Configuration.

Two-Main and Transfer Bus Configuration.

Double Bus Configuration.

Power System Troubleshooting

The C90 Plus contains tools that allow for the early detection of impending breaker problems and allow for maintenance to be performed before serious damage occurs.

[^0]
Fast Load Shed

Why Fast Load Shed?

Conventional frequency and voltage load shedding schemes operate typically in 250 ms to seconds.

Contingency based load shedding schemes are typically faster at $160-400 \mathrm{~ms}$ depending on both system architecture and communications employed.

Both these scheme types are too slow for industrial cogeneration applications, such as oil and gas or manufacturing, where very fast load shedding is required to ensure power system and critical processes integrity.

What is Fast Load Shed?

Fast load shed is a system consisting of one or more C90 Plus, IEC 61850-Ethernet network, UR, UR ${ }^{\text {Plus }}$ or IEC 61850-8-1 capable end devices that provides fast load shedding, to re-establish power balance when source/ loads balance is disrupted. End devices are of UR, UR ${ }^{\text {Plus }}, \mathrm{SR}$ or IED's with IEC 61850-8-1 support (other vendor IED interoperability not proven/tested). It is possible to use existing devices which do not support IEC 61850. In those cases the D25 RTU can be used to communicate between those existing devices and the fast load shed controller (FLSC), however this will slow the scheme down. The C90 Plus FLSC checks if generation lost exceeds remaining generation reserve per:

$$
\Delta(\text { Pgen })+\text { Preserve } \geq 0
$$

In case of generation loss or power unbalance GOOSE messages are sent to shed enough load per pre-defined priorities above available generation reserve (Adaptive Mode). Load priorities can be changed/updated via HMI within a second. Alternatively, a pre-defined shedding scenario can be executed upon each defined contingency (Static Mode).

Up to 16 automatic reports are generated for any scheme operation containing Fast Load Shed Controller (FLSC) relay name, firmware revision, contingency date/time and duration, steady-state power flows, infeeds lost, scenarios encountered, load groups shed, settings last changed date.

Speed of Fast Load Shed Scheme:

The speed of Fast Load Shedding including internal processing is as follows:

Origin	UR end device detects trip/breaker operation
$3000 \mu \mathrm{~s}$	UR GOOSE message with change of online state
$200 \mu \mathrm{~s}$	Message passed through multiple LAN switches
$3000 \mu \mathrm{~s}$	FLSC processing and calculations
$1000 \mu \mathrm{~s}$	Shed command GOOSE message composed
$500 \mu \mathrm{~s}$	FLSC GOOSE message is sent through LAN switches
$3000 \mu \mathrm{~s}$	Shed command GOOSE message parsed by load URs
$4000 \mu \mathrm{~s}$	UR end device calculations and processing
$2000 \mu \mathrm{~s}$	Trip contact output closes
16.7 ms	Total

End-to-end execution made under 20 ms

C90 Plus Load Shed Scheme Devices

C90 Plus Fast Load Shed Controller (FLSC)

The controller is the main decision point of the system where all the calculations and intelligent commands are sent. It is a substation hardened device with a real-time operating system that is highly reliable and accurate. It is also equipped with a local annunciator panel and HMI screen (optional) for ease-of-use for maintenance and operation. The controller receives source data from end devices, load data from end devices or aggregators via analog GOOSE. It handles up to 64 loads or infeeds as well as 6 local infeeds, and makes the final decision to shed load. The load shed commands are issued via GOOSE to end devices.

C90 Plus Fast Load Shed Aggregator (FLSA)

This is an extension of the system allowing for aggregation of load data and is a load shed data concentrator, combining load data from end devices and sending as analog GOOSE to the FLSC. It does not make load shed decisions. It allows the controller to handle more than 64 loads. By connecting the aggregators in a tree-like matrix, the number of loads controlled with this scheme can reach over 2500.

Load Shed Controller Design

The FLSC can interface or aggregate measurements into 32 sources/infeeds and 32 loads/load groups (many loads/group).

User-defined shed priorities of the load groups are fixed or user-selectable through
an HMI. Loads can be taken out of scan if it is determined that shedding is not required. The FLSC has an auto-compute solution option (Adaptive Mode) where loads to be shed are calculated based on priorities, generation lost and generation reserve, and a manual scenario execution option (Static Mode) where load shedding is pre-determined for each power loss contingency.

Scalability of the Fast Load Shed Scheme

The controller can handle up to 64 infeeds/ loads or aggregators plus 6 local devices (infeeds or loads).

Adding another C90 Plus as an aggregator extends the system by an additional 70 loads. With 12 infeeds, 18 loads \& 40 aggregators
(64 loads each), the system can support 12 infeeds and 2578 sheddable loads. Minimal re-configuration is required in the case of system expansion.

Interoperability

All communications are based on GOOSE and IEC 61850-8-1.

The System Overview and Architecture

Below is a typical Fast Load Shed scheme, consisting of:

- $1 \times$ C90 ${ }^{\text {Plus }}$ FLSC
- IEC 61850-Ethernet network
- $2 \times$ C90 Plus FLSA's (optional based on system size)
- IEC 61850-8-1 capable end devices

The above system architecture can be expanded to cater for non-IEC 61850 end devices by adding a D25 Substation Controller.

Simplified Source-Load Example

Below is a simplified system illustrating the load shed priorities and how shedding is determined:

The Total System Load $=$ PGrp1 + PGrp2 + PGrp3 + PGrp4 + PGrp5
Total Source/Generation $=P G 1+P G 2+$ PMA + PMB
The C90 Plus calculates: Δ (Pgen)+ Preserve ≥ 0
LOAD PRIORITIZATION: (AS SET BY END-USER)

Asset	Value	Priority/Status (User set)
Group 1	10 MW	5
Group 2	10 MW	0 (Don't Shed)
Group 3	5 MW	1
Group 4	20 MW	4
Group 5	5 MW	2

Example: For a loss of 9MW of Generation with no generation reserve, the scheme will trip Load Groups 3 and 5 for a total of 10MW.

Actual Load Shed Performance Results (System Islanded)

Below are some test results from a C90 Plus fast load shed scheme operation in conjunction with backup $\mathrm{df} / \mathrm{dt}$ and under frequency load shedding, illustrating operating speed of each system at a petrochemical facility that got islanded as a 4.5 MW underpowered island. In this case the scheme operated in 13 ms , including trip command to shedding load breakers.

TIME(MS)	EVENT
0	Breaker MB Opened Manually
8	Breaker Open De-bounced Island Detected Priorities 1, 2 and, 3 Load Shed Sent
10	Shed Message Received at Load Relays
13	Trip Coils Energized
50	Shed Breaker Open - Load Shed
64	ROCOF(df/dt) Trigger
106	Under Frequency Load Shed Trigger

C90 Plus Automation Control System

The C90plus is a powerful logic controller and protection product designed for the requirements of industrial and utility power systems. Its unparalleled list of features make the C90 Plus one of the most agile and advanced products, allowing it to perform several functions and be used in many scenarios based on the needs of each customer. The C90 Plus provides unmatched logic processing ability combined with a powerful math engine with deterministic execution of logic equations, regardless of the configuration of the number of lines of logic.

The C90 Plus provides the tools and functionality necessary for creating customized automation and control schemes that include:

- Advanced bay control and interlocking
- Breaker monitoring and control
- Automatic bus transfer schemes
- Load shedding and load restoration schemes
- Ultra fast load shedding in industrial plants

Automation Logic

The C90 Plus incorporates advanced automation features including powerful FlexLogic ${ }^{\text {TM }}$ (user programmable logic) for its protection and advanced automation schemes. Combined with the communication capabilities, C90 Plus automation features far surpass what is found in average relays with programmable logic. The C90 Plus integrates seamlessly with UR and UR ${ }^{\text {Plus }}$ relays for complete system protection, including interlocking and special protection schemes.

FlexLogic

FlexLogic is the powerful user programmable logic engine that provides the ability to create customized protection and control schemes thereby minimizing the need, and the associated costs, of auxiliary components and wiring. The independent automation FlexLogic features math, Boolean and control functions, which can be used for advanced load shedding, load restoration and dynamic Volt/VAR control schemes. More than 4000 lines of logic are provided with a deterministic execution rate of 50 msec , irrespective of the number of lines of logic.

Automation FlexLogic operators include:

- Math: EXP, ACOS, ATAN2, ATAN, ASIN, FLOOR, CEIL, LOG, LOG10, POW, SIN, COS, TAN, NEG, ABS, SQRT, ADD, SUB, MUL, DIV, CONSTANT
- Boolean: AND, NAND, NOR, NOT, OR, XOR
- Control: =, <=, !=, >=, <, >, Latch, Positive/ Negative/Dual one shot, Timers, Counters

Deterministic Automation

A power system is a real-time system in which time and accuracy of every control should be considered critical. The C90 Plus operating system ensures that every action and control is scheduled properly and beforehand to guarantee that nothing is missed nor delayed. This intelligence inside the $\mathrm{C} 90^{\text {Plus }}$ handles both protection trip commands as well as any other logic written for execution as per its programmed timeline. No more delays or missed timelines when it comes to control because the processor is 'busy' or otherwise.

Communications

The C90 Plus supports the most popular industry standard protocols enabling easy, direct integration into DCS and SCADA systems including:

- IEC 61850
- DNP3
- Ethernet Global Data (EGD)
- IEC 60870-5-104
- Modbus RTU, Modbus TCP/IP
- PRP as per IEC 62439-3
- Three independently configurable IP's with failover features
- Inter-relay communication card to enable implementation of pilot schemes based on standard communication protocols
- Front USB for maintenance and downloading records and events

Interoperability with Embedded IEC 61850

Use the C90 Plus with integrated IEC 61850 to lower costs associated with protection, control and automation. GE Multilin's leadership in IEC 61850 comes from thousands of installed devices and follows on many years of development and operational experience with UCA 2.0.

- Replace expensive copper wiring between devices with direct transfer of data using GOOSE messaging

Custom Programmable Logic Designer

The C90 ows supports an advanced automation logic engine that supports Boolean operators, analog comparisons, and advanced mathematical operations.

- Configure systems based on IEC 61850 and also monitor and troubleshoot them in realtime with EnerVista Viewpoint Engineer
- Integrate GE Multilin IEDs and generic IEC 61850-compliant devices seamlessly in EnerVista Viewpoint Monitoring

Extreme Communication

- High reliable communication card with automatic failover and extremely fast redundant schemes
- Inter-relay communication card to enable implementation of pilot schemes that are based on standard communication protocols, and both "Direct" and "Tele-Protection" input and output elements available

Ease-of-use, security ease-of-use and quick setups are considered throughout every application and configuration parameter requiring virtually no training for those working in the power industry. The EnerVista suite is an industry-leading set of software programs that simplifies every aspect of using the C90Plus relay. The EnerVista suite provides all the tools to monitor the status of the protected asset, maintain the relay, and integrate information measured by the C90 Plus into DCS or SCADA monitoring systems. Convenient COMTRADE and Sequence of Events viewers are an integral part of the UR ${ }^{\text {Plus }}$ Setup software included with every UR ${ }^{\text {Plus }}$ relay, to carry out postmortem event
analysis to ensure proper protection system operation.

Security and NERC ${ }^{\circledR}$ CIP

- Audit Trail
- Password protection and authentication
- Support for alphanumeric passwords
- Role-based access control to manage multiple personnel rights as per ANSI INCITS 359-2004

LAN Redundancy

Substation LAN redundancy has been traditionally accomplished by reconfiguring the active network topology in case of failure. Regardless of the type of LAN architecture (tree, mesh, etc), reconfiguring the active LAN requires time to switchover, during which the LAN is unavailable. UR devices deliver redundancy as specified by PRP-IEC 62439-3, which eliminates the dependency on LAN reconfiguration and the associated switchover time. The UR becomes a dual attached node that transmits data packets over both main and redundant networks simultaneously, so in case of failure, one of the data packets will reach the receiving device with no time delay.

EnerVista Launchpad

EnerVista Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining GE's Multilin products. The
setup software within Launchpad allows for the configuration of devices in real-time by communicating using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time. Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:

- Manuals
- Application Notes
- Guideform Specifications
- Brochures
- Wiring Diagrams
- FAQ's
- Service Bulletins

Viewpoint Engineer

Viewpoint Engineer is a set of powerful tools that will allow you to configure and test your relays at a system level in an easy-touse, graphical drag-and-drop environment. Viewpoint Engineer provides the following configuration and commissioning utilities:

- Graphical Logic Designer
- Graphical System Designer
- Graphical Logic Monitor
- Graphical System Monitor

User Interface and HMI

The C90Plus provides extensive local HMI capability through two dedicated display panels. One serves as a digital annunciator and the other optional HMI is for display and control functions.

Annunciator

Enhanced HMI and Annouciator panels on the front of the $\mathrm{C} 90^{\text {Plus }}$ make it one of the most powerful human machine interfaces on local units. The C90 Plus provides an embedded, configurable color LCD annunciator on the front panel of the device, eliminating the need for LED labels and separate annunciators in the relay panel.

- Any contact/direct/remote input or internally generated FlexLogic operand can be assigned to be displayed on the annunciator.
- Up to 288 targets may be assigned. The display can be configured for 12/24/48 alarms per page to a maximum of 24 pages using a 16-color pallet for better
visualization and customization.
- A separate self-test message page on the annunciator panel shows clear error messages about the device health, greatly assisting in identifying, and correcting device related issues.
- For easy maintenance and asset management, product information, such as IP addresses and serial numbers of each module, are also accessible without the need to connect to the unit.

Phase TOC1 Operate	Phase TOC2 Operate	CB Failure Operate		CB1 Open	
CB2 Open	DC1 Open	Earth SwitchOpen		DC3 Open	
OC4 Open	Reciosing Enabled	Load Shed I Enabled		Load Shed IIEnauled	
		Resal	NextAlamm		Next Pagc

12 to 48 user-configurable alarms per page eliminate the need for a separate annunciator.

HMI

- Comprehensive data visualization.

PMETERING - SUMMARY'
Phase AB Phase BC Phase CA 400.1 399.4 400.2 kV Phase A Phase B Phase C 368.1 360.4 366.2 A 255 254 255 MW 4.2 4.1 4.2 MVAr 0.96 0.95 0.96 PF Summary Energy Phasors Sequence

Easy-to-read large display of metering values.

- User-programmable single line diagram supported by ANSI/IEC symbols. Preprogrammed single line diagrams for bay monitoring and control for common bus configurations, including ring-bus, double breaker and breaker-and-half configurations.

Single Bus Configuration.

- Multiple programmable control pushbuttons, ten pushbuttons per page with multiple levels of control.
- Local/remote control.

Delta 0 days 00:00:00:013891			Event 427 \& 426	
Event\#	Dateתlime		Cause	
431	Mar 052007 12:23:23:637727		Cont ip 8 On	
430	Mar 052007 12:23:23:637727		Cont ip 7 On	
429	Mar 052007 12:23:23:637727		Contip 6 On	
428	Mar 052007 12:23:23:637727		Cont ip 5 On	
427	Mar 052007 12:23:20:735543		Dist Z1 OP	
426	Mar 052007 12:23:20:721634		Dist Z1 PKP	
425	Mar 052007 12:23:20:721634		Dist Z2 PKP	
424	Mar 052007 12:23:20:721634		Dist Z3 PKP	
423	Mar 052007 12:23:20:721634		OSC Trigger	
Up 4	Down 7	Retrieve	Lock Cursor	More -

Sequence of event records provide the ability to view the time difference between two events for troubleshooting and analysis.

- Pre-programmed comprehensive displays for:
- Metering
- Bay Control
- Fault Reports
- Sequence of Event Reports
- Fault Records
- Device Diagnostics
- Equipment Manager
- Fast Load Shed Status and Reports
- Real-Time Phasor Displays of Voltage, Current and Sequence Components

Phasor display of sequence components showing the standing unbalance in the line.

Front Panel USB

The front panel of the C90 Plus provides a USB 2.0 host for field laptop connections for highspeed data transfers, making downloading and uploading faster than a conventional RS232 connection.

C90 Plus Automation Control System

Digital Alarm Annunciator

- 288 customizable alarms in multiple pages using a pallet of 16 colors
- Eliminates the need for separate annunciator
- Descriptive self-test messages

Intuitive HMI

- User-configurable single line diagrams using IEC/ANSI library symbols
- Local control and status indication of breakers \& disconnect switches, 20 userprogrammable pushbuttons
- Local/remote control
- Fault, event, disturbance and transient reports

Bay Protection

- Overcurrent, over/under voltage, over/ under frequency
- Breaker failure, autoreclose, synch check
- 512 lines of Protection FlexLogic @ 1 msec execution

- Built-in industry hardened logic controller
- 4096 lines of independent userprogrammable logic, 50 msec execution rate
- Advanced math, Boolean and control operations

Communication Capabilities

- Up to three independent Ethernet ports with redundant fast-over
- IEC 61850, DNP3, MODBUS TCP/IP, IEC 60870-5-104 protocols
- Front USB port for high speed data transfer

Recorders

- Eliminates the need for stand-alone disturbance recorders
- Configurable and up to 256 samples/cycle, 1 min duration recorder
- Dedicated disturbance recorder for recording long term events
- Synchrophasors over Ethernet

Disturbance Recorder Eliminates Stand-Alone DFR
and Phasor Measurement Unit

- DFR - SUMMART					
		Ready to Capture		Hernory Available	
Fault Report Transient Record Disturbance R					
Records		Latest		Tot	
Events Faults Transients Disturbances		Mar 052007 12:23:23 Mar 052007 12:23:20 Mar 052007 12:23:20 Mar 042007 02:47:12	$\begin{aligned} & 37727 \\ & 35543 \\ & 21634 \\ & 46789 \end{aligned}$	$\begin{aligned} & 431 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	
Summary	SOE	E Fault Reports	Transi		Disturbance

Digital fault recorder summary with the latest information on events, faults, transients and disturbances.

Real-Time Phasor Information of Fundamental and Sequence Components

Real-time display of the fundamental phasors of voltage and current in the front panel HMI.

Dimensions
HORIZONTAL FRONT VIEW

Typical Wiring Diagram

Technical Specifications

AUTORECLOSURE	
Applications: Tripping schemes: Reclose attempts: Reclosing mode: Breaker sequence:	two breakers single-pole and three-pole up to 4 before lockout selectable selectable
AUXILIARY OVERVOLTAGE	
Pickup level: Dropout level: Level accuracy: Pickup delay: Reset delay: Timing accuracy: Operate time:	0.000 to 1.100 pu in steps of 0.001 <98\% of pickup $\pm 0.5 \%$ of reading from 10 to 208 V 0.00 to 600.00 seconds in steps of 0.01 0.00 to 600.00 seconds in steps of 0.01 $\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater) <2 cycles at $1.10 \times$ pickup at 60 Hz
AUXILIARY UNDERVOLTAGE	
Pickup level: Dropout level: Level accuracy: Curve shapes: Curve multiplier: Timing accuracy:	0.000 to 1.100 pu in steps of 0.001 $>102 \%$ of pickup $\pm 0.5 \%$ of reading from 10 to 208 V GE IAV inverse, definite time 0.00 to 600.00 in steps of 0.01 $\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)
BREAKER FAILURE	
Mode: Current supervision: Supervision pickup: Supervision dropout: Supervision accuracy a Supervision accuracy Time accuracy:	```single-pole, three-pole phase current, neutral current 0.001 to 30.000 pu in steps of 0.001 <98\% of pickup 0.1 to \(2.0 \times \mathrm{CT}\) : \(\pm 2 \%\) of rated \(>2.0 \times \mathrm{CT}\) : \(\pm 2.5 \%\) of reading \(\pm 3 \%\) or 4 ms (whichever is greater)```
BREAKER FLASHOVER	
Operating quantity:	phase current, voltage, and voltage difference
Pickup level voltage:	0.000 to 1.500 pu in steps of 0.001
Dropout level voltage:	97 to 98% of pickup
Pickup level current:	0.000 to 1.500 pu in steps of 0.001
Dropout level current: Level accuracy:	97 to 98% of pickup $\pm 0.5 \%$ or $\pm 0.1 \%$ of rated (whichever is greater)
Pickup delay:	0.000 to 65.535 seconds in steps of 0.001
Time accuracy:	$\pm 3 \% \text { or } \pm 42 \mathrm{~ms}$ (whichever is greater)
Operate time:	<42 ms at $1.10 \times$ pickup at 60 Hz
CONTACT INPUTS	
Input rating: On threshold:	300 V DC maximum 70% of nominal voltage setting or 20 V (whichever is greater)
Off threshold:	30% of nominal voltage setting or 15 V (whichever is greater)
Bounce threshold:	50% of nominal voltage setting or 20 V (whichever is greater)
AZ threshold:	80\% of nominal voltage setting
Overvoltage threshold:	130% of nominal voltage setting or 285 \checkmark maximum
Maximum current:	10 mA during turn on, 0.5 mA steadystate
Nominal voltage: Input impedance:	$\begin{aligned} & 24 \text { to } 250 \mathrm{~V} \\ & \text { active } \end{aligned}$
Recognition time:	<1 ms
Debounce timer:	1.50 to 16.00 ms in steps of 0.25
Chatter detection timer:	1 to 100 secon
Chatter state changes:	10 to 100
DISTURBANCE DETECTOR (50DD)	
Type: Range:	sensitive current disturbance detector 0.004 to 0.04 pu ltwice the current cutoff level threshold)
FLEXCURVES	
Number: Reset points: Operate points: Time delay:	4 (A through D) 40 (0 through 1 of pickup) 80 (1 through 20 of pickup) 0 to 65535 ms in steps of 1
FLEXELEMENTS	
Elements: Operating signal:	8 any analog actual value, or two values in differential mode
Operating signal mode:	signed or absolute value
Operating mode:	level, delta
Comparator detection:	over, under
Pickup level:	-90.000 to 90.000 pu in steps of 0.001
Hysteresis:	0.1 to 50.0% in steps of 0.1
Delta dt:	20 ms to 60 days
Pickup delay:	0.000 to 65.535 seconds in steps of 0.001
Dropout delay:	0.000 to 65.535 seconds in steps of 0.001

Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001

Dropout level: $\quad<98 \%$ of pickup

Level accuracy at 0.1 to $2.0 \times \mathrm{CT}$:
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
Level accuracy at $>2.0 \times \mathrm{CT}$:
Curve shapes: IEEE Moderately Inverse, IEEE Very Inverse, IEEE Extremely Inverse, IEC (BS) A, IEC (BS) B, IEC (BS) C, IEC Short Inverse, IAC Inverse, IAC Short Inverse, IAC Very Inverse, IAC Extremely Inverse, 12t, FlexCurves ${ }^{\text {TM }}$ (programmable),
definite time (0.01 second base curve)
Curve multiplier: $\quad 0.01$ to 600.00 in steps of 0.01
Reset type: instantaneous/timed (per IEEE) and linear
Timing accuracy for 1.03 to $20 \times$ pickup: $\pm 3.5 \%$ of operating time or ± 1 cycle (whichever is greater)

NEUTRAL DIRECTIONAL OVERCURRENT

Polarizing: voltage, current, dual
Polarizing voltage: $\quad \mathrm{V} 0$ or VX
Polarizing current: IG
Operating current: I
Level sensing: $\quad \overline{3} \times\| \| 0 \mid-K \times\left\|_1\right\|$, IG; independent for
forward and reverse
Restraint (K): $\quad 0.000$ to 0.500 in steps of 0.001
Characteristic angle: -90 to 90° in steps of 1
Limit angle: $\quad 40$ to 90° in steps of 1 , independent for
Angle accuracy:
Offset impedance: $\quad \begin{aligned} & \pm 2 \\ & 0.00 \\ & \text { to } 250.00 \text { ohms in steps of } 0.01\end{aligned}$
Pickup level: $\quad 0.002$ to 30.000 pu in steps of 0.01
Dropout level: <98\%
Operation time: $\quad<16 \mathrm{~ms}$ at $3 \times$ pickup at 60 Hz

NEUTRAL INSTANTANEOUS OVERCURRENT
 Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001

Dropout level:

<98\% of pickup
Level accuracy at 0.1 to $2.0 \times \mathrm{CT}$:
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated
(whichever is greater)
Level accuracy at >2.0×CT:
$\pm 1.5 \%$ of reading
Pickup delay: $\quad 0.00$ to 600.00 seconds in steps of 0.01
Reset delay: $\quad 0.00$ to 600.00 seconds in steps of 0.01
$\begin{array}{ll}\text { Reset delay: } & 0.00 \text { to } 600.00 \text { seconds in steps } \\ \text { Operate time: } & <20 \mathrm{~ms} \text { at } 3 \times \text { pickup at } 60 \mathrm{~Hz}\end{array}$
$\begin{array}{ll}\text { Operate time: } & <20 \mathrm{~ms} \text { at } 3 \times \text { pickup at } \\ \text { Timing accuracy for operation at } 1.5 \times \text { pickup: }\end{array}$
$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

NEUTRAL OVERVOLTAGE	
Pickup level:	0.000 to 1.250 pu in steps of 0.001
Dropout level:	$<98 \%$ of pickup
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V
Pickup delay:	0.00 to 600.00 seconds in steps of 0.01
	(definite time) or user-defined curve
Reset delay:	0.00 to 600.00 seconds in steps of 0.01
Timing accuracy:	$\pm 3 \%$ or ± 20 ms (whichever is greater)
Operate time:	<3 cycles at $1.10 \times$ pickup

Technical Specifications (cont'd)
PHASE DIRECTIONAL OVERCURRENT
Relay connection: $\quad 90^{\circ}$ (quadrature)
Quadrature voltage: phase A (VBC), phase B (VCA), phase C (VAB) for $A B C$ phase sequence; phase A (VCB), phase B (VAC), phase C (VBA) for ACB
phase sequence
Polarizing voltage threshold:
0.000 to 3.000 pu in steps of 0.001

Current sensitivity threshold:
0.05 pu

Characteristic angle: 0 to 359° in steps of 1
Angle accuracy: $\quad \pm 2^{\circ}$
Tripping operation time: $<12 \mathrm{~ms}$, typically (reverse load, forward fault)
Blocking operation time: $<8 \mathrm{~ms}$, typically (forward load, reverse fault

PHASE INSTANTANEOUS OVERCURRENT
Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001
Dropout level: $\quad<98 \%$ of pickup
Level accuracy at 0.1 to $2.0 \times \mathrm{CT}$:
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
Level accuracy at $>2.0 \times \mathrm{CT}$:
Overreach: $\pm 1.5 \%$ of reading
Pickup delay: $\quad 0.00$ to 600.00 seconds in steps of 0.01
Reset delay: $\quad 0.00$ to 600.00 seconds in steps of 0.01
Operate time: $\quad<16 \mathrm{~ms}$ at $3 \times$ pickup at 60 Hz
Timing accuracy for operation at $1.5 \times$ pickup.
$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)

PHASE OVERVOLTAGE	
Voltage:	phasor only
Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	$<98 \%$ of pickup
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V
Pickup delay:	0.00 to 600.00 seconds in steps of 0.01
Operate time:	<3 cycles at $1.10 \times$ pickup
Timing accuracy:	$\pm 3 \%$ or ± 4 ms (whichever is greater)
PHASE TIME OVERCURRENT	

Current:
Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001
Dropout level: $\quad<98 \%$ of pickup
Level accuracy at 0.1 to $2.0 \times \mathrm{CT}$.
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
Level accuracy at >2.0 $\times \mathrm{CT}$:
Curve shapes: IEEE Moderately Inverse, IEEE Very Inverse, IEEE Extremely Inverse, IEC (BS) A, IEC (BS) B, IEC (BS) C, IEC Short
Inverse, IAC Inverse IAC Short Inverse Inverse, IAC Inverse, $A C$ Short Inverse, IAC Very Inverse, IAC Extremely Inverse
I2t. FlexCurvesTM (programmable) 12 t , FlexCurves ${ }^{\text {TM }}$ (programmable),
definite time 10.01 definite time (0.01 second base curve) 0.01 to 600.00 in steps of 0.01
$\begin{array}{ll}\text { Curve multiplier: } & 0.01 \text { to } 600.00 \text { in steps of } 0.01 \\ \text { Reset type: } & \text { instantaneous/timed (per IEEE) }\end{array}$ instantaneous/timed (per IEEE)
to $20 \times$ pickup:
$\pm 3.5 \%$ of operating time or ± 1 cycle
(whichever is greater) (whichever is greater)

PHASE UNDERVOLTAGE	
Pickup level:	0.000 to 1.100 pu in steps of 0.001
Dropout level:	>102\% of pickup
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V
Curve shapes:	GE IAV Inverse; Definite Time (0.1 second base curve)
Curve multiplier:	0.00 to 600.00 in steps of 0.01
Timing accuracy	ration at $<0.90 \times$ pickup: $\pm 3.5 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)

PROTECTION FLEXLOGIC

Programming:	Reverse Polish Notation with graphical visualization (keypad programmable)
Lines of code:	512
Internal variables:	64
Supported operations:	NOT, XOR, OR (2 to 16 inputs), AND (2 to 16 inputs), NOR (2 to 16 inputs), NAND (2 to 16 inputs), latch (reset-dominant), edge detectors, timers
Inputs:	any logical variable, contact, or virtual input
Number of timers:	32
Pickup delay:	0 to 60000 (ms, seconds, or minutes) in steps of 1
Dropout delay:	0 to 60000 (ms, seconds, or minutes) in steps of 1

PROTECTION VIRTUAL INPUTS
nput points: 64
Programmability: self-reset or latched

PROTECTION VIRTUAL OUTPUTS		DISCONNECT CONTROL		
Output points: Programmability:	96 output of a protection FlexLogic equation or input to a protection	Mode: Control: Control seal-in:	single-pole, three-pole open/close, local/SCADA 0 to 2000 ms in steps of 1	
REMOTE INPUTS (IEC 61850 GSSE/GOOSE)		DISCONNECT INTERLOCKING		
		Interlocking inputs:	3	
Input points: Remote devices: Default states on loss of	64 32	FAST LOAD SHEDDING (FLS)		
	Remote double-points status inputs: 16	Elements: Algorithm: Static mode scenarios:	1 adaptive (using priorities) or static (using trip masks) up to 32	
REMOTE OUTPUTS (IEC Standard output points: User output points:	C 61850 GSSE/GOOSE) 32 32	Total of infeeds, loads, and aggregators monitored per $\mathrm{C} 90^{\text {Plus. }}$ up to 64 via communications plus 6 local infeeds or loads		
SENSITIVE DIRECTIONAL POWER		Infeeds: Loads per end device: Loads per C90Plus:	up to 32 up to 6 per GOOSE data message	
Measured power: Stages: Characteristic angle:	```three-phase, true RMS 2 0 to 359}\mp@subsup{}{}{\circ}\mathrm{ in steps of }```		up to 70 (up to 64 from end device, plus up to 6 from local contact input/output cards)	
Calibration angle:	0.00 to $0.95{ }^{\circ}$ in steps of 0.05	Load groups:	to 32	
Minimum power: Pickup level accuracy: Hysteresis:	-1.200 to 1.200 pu in steps of 0.001 $\pm 1 \%$ or ± 0.001 pu (whichever is greater)	Operate time:	1/8 power system cycle (exclusive of communications and end device delays)	
Hysteresis: Pickup delay:	0.00 to 600.00 seconds in steps of 0.01 $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater) 50 ms	Power measurement updating: 250 ms		
Pickup delay: Time accuracy: Operate time:		FREQUENCY RATE OF CHANGE LOAD SHEDDING		
SMALL SIGNAL OSCILLATION DETECTOR		Minimum voltage:	0.10 to 1.25 pu in steps of 0.01	
Measured value: Elements: Inputs: Minimum pickup:	any analog value 2 6	Pickup level: Dropout level: Pickup delay: Dropout delay: Level accuracy: Time accuracy: 95% settling time for d	0.10 to $15.00 \mathrm{~Hz} / \mathrm{s}$ in steps of 0.01 pickup $-0.02 \mathrm{~Hz} / \mathrm{s}$	
	0.02 to 10.00 pu in steps of 0.01 for alarm; 0.05 to 10.00 pu in steps of 0.01 for trip		0.00 to 99.99 seconds in steps of 0.001 $30 \mathrm{mHz} / \mathrm{s}$ or 3.5% (whichever is greater) $\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)	
Pickup level accuracy: Pickup delay:	$\pm 5 \%$ or ± 0.1 pu (whichever is greater) definite time, 0.00 to 600.00 seconds in steps of 0.01 $\pm 3 \%$ or $\pm 20 \mathrm{~ms}$ (whichever is greater) $3 /(4 \times \mathrm{fs})$ to $1 / \mathrm{fs}$, where fs is the signal frequency	95% settling time for d Operate time (typical):	6 cycles at $2 \times$ pickup; 5 cycles at $3 \times$ pickup; 4 cycles at $5 \times$ pickup	
Time accuracy: Operate time:		LOAD SHEDDING SOURCE		
VT FUSE FAILURE SUPERVISION		Minimum voltage pickup: 0.00 to 1.25 pu in steps of 0.01 Minimum voltage dropout: pickup +0.20 pu		
Elements: Monitored parameters:	1 per source V_2. V_1, I_1	Maximum negative-se Maximum negative-se	uence voltage pickup: 0.00 to 1.25 pu in steps of 0.01 uence voltage dropout: pickup - 0.20 pu	
Automation		SELECTOR SWITCH		
AUTOMATION LOGIC		Upper position limit: 1 to 7 in steps of 1 Selecting mode: time-out or acknowledge Time-out timer: Control inputs: step-up and three-bit Power-up mode: restore from non-volatile memory or synchronize to a three bit control input or synchronize/restore mode or		
Number of lines of logic: 4096				
Edit and view capability: yes				
Logic type: Programming language:	cyclic			
Execution rate:	50 ms	SYNCHROCHECK		
Variable types:	Boolean, IEEE floating point NOT, XOR, OR, AND, NOR, NAND, any contact input, any direct input, any teleprotection input, any remote input, any virtual input, any automation logic operand			
Boolean operations:		Maximum voltage diffe Maximum angle differe	0 to 100000 volts in steps of 1 ce: 0 to 100° in steps of 1	
Arithmetic operations:	add, subtract, multiply, divide, negation, absolute value, square root, exponent, logarithm, sine, cosine, tangent, arcsine, arccosine, arctangent, natural logarithm, base 10 algorithm, modulo, ceiling, floor	Hysteresis for maximu Dead source function:	ference: 0.00 to 2.00 Hz in steps of 0.01 frequency difference: 0.00 to 0.10 Hz in steps of 0.01 none, LV1 \& DV2, DV1 \& LV2, DV1 or DV2, DV1 xor DV2, DV1 \& DV2 (L = live, $D=$ dead)	
Control operation	latch, timer, comparator, absolute timer functions	UNDERFREQUENCY LOAD SHEDDING		
Boolean inputs:	any contact input, direct input, teleprotection input, remote input, virtual input, or automation logic operand	Elements: Pickup level: Dropout level:	10 45.00 to 65.00 Hz in steps of 0.01 pickup level +0.03 Hz	
Analog inputs:	any FlexAnalog $^{\text {TM }}$ quantity	Pickup delay:	0.00 to 99.99 seconds in steps of 0.01	
Virtual inputs:	128	Dropout delay:	0.00 to 99.99 seconds in steps of 0.01	
Virtual outputs:	255	Level accuracy:	$\pm 0.01 \mathrm{~Hz}$	
Remote inputs:	64	Time accuracy:	$\pm 3 \%$ or 4 ms (whichever is greater)	
Remote outputs:	64	Operate time (typicall:	4 cycles at $-0.1 \mathrm{~Hz} / \mathrm{s}$ change; 3.5 cycles	
Remote devices:	32		at $-0.3 \mathrm{~Hz} / \mathrm{s}$ change; 3 cycles at -0.5 Hz / s change	
AUTOMATION VIRTUAL INPUTS		UNDERVOLTAGE LOAD SHEDDING		
Input points: Programmability:	128 self-reset or latched	Elements: Pickup level:	0.10 to 1.25 pu in steps of 0.01 pickup level + 0.20 pu 0.00 to 99.99 seconds in steps of 0.01 0.00 to 99.99 seconds in steps of 0.01 $\pm 0.5 \%$ of reading from 10 to 208 volts $\pm 3 \%$ or 4 ms (whichever is greater) 2 cycles at $0.90 \times$ pickup	
AUTOMATION VIRTUAL OUTPUTS		Pickup level: Dropout level: Pickup delay: Dropout delay: Level accuracy: Time accuracy: Operate time (typical):		
Output points: Programmability:	255 output of an automation logic equation or input to an automation logic equation			
BREAKER CONTROL				
Mode: Control: Control seal-in:	single-pole, three-pole open/close, local/SCADA 0 to 2000 ms in steps of 1			
BREAKER INTERLOCKING				
Interlocking inputs:				

Equipment Manager

BATTERY MONITOR	
Principle: alarms	monitors battery voltage and auxiliary
Hysteresis:	5\%
Timing accuracy:	1 cycle
BREAKER ARCING CURRENT	
Elements: Principle:	1 per breaker (to a maximum of 2) accumulates contact wear (1xt), measures fault magnitude and duration
Auxiliary contact compensation:	
	0 to 50 ms in steps of 1
Alarm threshold:	0 to $50000 \mathrm{kA2}$-cycle in steps of 1
Fault duration accuracy	0.25 of power cycle

Metering

CURRENT METERING	
Type: Accuracy at 0.1 to $2.0 \times$	phase and ground RMS current CT: $\pm 0.25 \%$ of reading or $\pm 0.1 \%$ of rated (whichever is greater) at $50 / 60 \mathrm{~Hz}$ nominal frequency
Accuracy at >2.0 \times CT:	$\pm 1.0 \%$ of reading, at $50 / 60 \mathrm{~Hz}$ nominal frequency
DATA LOGGER	
Channels: Parameters: Statistics: Alarms:	1 to 16 any FlexAnalog value maximum and time of maximum, minimum and time of minimum, average high, high-high, low, low-low
ENERGY METERING	
Type: Accuracy: Range: Parameters: Update rate:	positive and negative watt-hours and var-hours $\pm 2.0 \%$ of reading -2.0×109 to $2.0 \times 109 \mathrm{MWh} /$ Mvarh three-phase only 50 ms
FREQUENCY METERING	
Accuracy at $\mathrm{V}=0.8$ to 1.2 pu : $\pm 0.001 \mathrm{~Hz}$ (when voltage signal is used for frequency measurement)	
Accuracy at $\mathrm{I}=0.1$ to 0.25 pu : $\pm 0.05 \mathrm{~Hz}$ (when current signal is used for frequency measurement)	
Accuracy at I > 0.25 pu:	$\pm 0.001 \mathrm{~Hz}$ (when current signal is used for frequency measurement)
PHASOR MEASUREMENT UNIT	
Output format:	per IEEE C37.118 standard
Channels:	14 synchrophasors, 8 analogs, 16 digitals
TVE (total vector error):	<1\%
Triggering:	frequency, voltage, current, power, rate of change of frequency, user-defined
Reporting rate:	$1,2,5,10,12,15,20,25,30,50 \text {, or } 60$ times per second
Number of clients:	One over TCP/IP port, two over UDP/IP ports
AC ranges:	as indicated in appropriate specifications sections
Network reporting format:	
	16-bit integer or 32-bit IEEE floating point numbers
Network reporting style:	rectangular (real and imaginary) or polar (magnitude and angle) coordinates
Post-filtering:	none, 3-point, 5 -point, 7-point
Calibration:	$\pm 5^{\circ}$
POWER METERING	
Real power accuracy:	$\pm 1.0 \%$ of reading at $-1.0 \leq P F<0.8$ and $0.8<\mathrm{PF} \leq 1.0$
Reactive power accuracy:	
Apparent power accuracy:	
VOLTAGE METERING	
Type: Accuracy:	RMS voltage $\pm 0.5 \%$ of reading from 30 to 208 volts at $50 / 60 \mathrm{~Hz}$ nominal frequency

Digital Fault Recorder

| DISTURBANCE RECORDER |
| :--- | :--- |

Station and circuit ID, date and time of
Drip, fault type, active setting group at time of trigger, pre-fault current and voltage phasors 12 cycles before 50DD associated with fault report source), fault current and voltage phasors (1 cycle after trigger), protection elements operated at time of trigger, firmware revision
$\begin{array}{ll}\text { Triggers: } & \text { user-selected operand } \\ \text { Data storage: } & \text { non-volatile }\end{array}$
Data storage: non-volatile memory

FAULT LOCATOR	
Method:	single-ended
Accuracy:	2% of line length
Units:	miles or kilometers
Trigger:	from fault report
Data storage:	non-volatile memory
FAST LOAD SHED REPORT	
Records:	16
Data:	FLSC relay name, firmware revision, contingency date/time and duration, steady-state power flows, infeeds lost, scenarios encountered, load groups shed, settings last change date
Triggers:	any FLS contingency
Data storage:	non-volatile memory

TRANSIENT RECORDER

Storage capacity: one record with all available channels
Number of records: 1 to 64
Sampling rate:
Timestamp accuracy:
Analog channels:
Analog channel data:
Digital channels:
$\begin{array}{ll}\text { Digital channels: } & \text { up to } 128 \\ \text { Digital channel data: } & \text { any contact input, direct input, remote }\end{array}$

Sampled channels:
Triggers:

Storage modes:
Triggering modes:
Pre-trigger window:
Data storage:
any contact input, direct input, remote
input, virtual input, automation logic operand, or FlexLogic operand

Sampled channel data: 16 -bit, unprocessed sampled channels
16 to 256 samples per power cycle $<10 \mu \mathrm{~s}$ per second of recording up to twelve 16 -bit, unprocessed, $A C$ up to twelve 16input channels
any FlexAnalog quantity
operand, or FlexLogic operand
up to 24
16 -bit, unprocessed sampled channels
any digital channel change of state, undervoltage, overvoltage, undercurrent, overcurrent, underfrequency, overfrequency, rate of change of frequency, one userprogrammable, one block automatic overwrite, protected time window from rising edge of trigger, continuous recording as long as trigger s active
oto 100\%
non-volatile memory

Front Panel Interface

ANNUNCIATOR	
Inputs:	288
Windows per page:	12 to 48
Pages:	up to 24
Sequence:	manual reset, locking
Off indication:	alarm inactive and reset
Flashing indication:	alarm active and not acknowledged, alarm inactive and not acknowledged
On indication:	alarm active and acknowledged, alarm inactive and not reset
Priority:	by active window and page number
Data storage:	non-volatile memory
CONTROL DISPLAY	
Devices:	status and control of up to 8 power system devices
Pushbuttons:	30 dedicated user-programmable pushbuttons
Functionality:	supports select-before-operate functionality
DIGITAL FAULT RECORDER DISPLAY	
Sequence of events:	displays the stored sequence of events record
Fault reports:	display and retrieval of the critical metrics of a stored fault report
Transient records:	retrieval of a stored transient record
Disturbance records:	retrieval of a stored disturbance record
Fast load shedding (FLS)	records: retrieval of a stored FLS record
EQUIPMENT MANAGER DISPLAY	
Battery monitoring:	displays the current battery voltage and alarm states
METERING DISPLAY	
Summary:	displays present values of voltage, current, real power, reactive power, power factor, and frequency on a perphase and total basis
Phasors:	digital and graphical display of present voltage and current magnitudes and angles
Sequence components:	displays present magnitudes and angles of current and voltage sequence components
Energy:	four-quadrant display of accumulated energy
Demand:	present and peak demand values for current and real, reactive, and apparent power
MAINTENANCE DISPLAY	
Input and output status: contact inputs and outpu	displays the current status of all uts

Hardware

AC CURRENT	
CT rated primary:	1 to 50000 A
CT rated secondary:	1 A or 5 A
Nominal frequency:	50 or 60 Hz
Relay burden:	<0.2 VA secondary
Conversion range:	0.02 to $46 \times$ CT rating RMS symmetrical
Current withstand:	20 ms at $250 \times$ rated, 1 second at $100 \times$ rated, continuous at $3 \times$ rated
AC VOLTAGE	
VT rated secondary:	50.0 to 240.0 V
VT ratio:	1.00 to 24000.0
Nominal frequency:	50 or 60 Hz
Relay burden:	$<0.25 \mathrm{VA}$ at 120 V
Conversion range:	1 to 275 V
Voltage withstand:	continuous at 260 V to neutral, 1 minute per hour at 420 V neutral
CONTACT INPUTS	
Input rating:	300 V DC maximum
Selectable thresholds:	24 to 250 V
Maximum current:	10 mA during turn on, 0.5 mA steadystate
Recognition time:	$<1 \mathrm{~ms}$
Debounce timer:	1.50 to 16.00 ms in steps of 0.25
CONTACT OUTPUTS: CRITICAL FAILURE RELAY	
Make and carry for 0.2 s :	
	10 A
Continuous carry:	6 A
Break at L/R of 40 ms :	0.250 A at 125 V DC; 0.125 A at 250 V DC
Operate time:	$<8 \mathrm{~ms}$
Contact material:	silver alloy

Tests

PRODUCTION TESTS	
Thermal:	products go through a 12 hour burn-in process at $60^{\circ} \mathrm{C}$
TYPE TESTS	
Vibration:	IEC 60255-21-1, 1G (class Bm)
Shock / bump:	IEC 60255-21-2, 10 G (class Bm)
Seismic (single axis):	IEC 60255-21-3, 1G / 3.5 mm (class 1)
Make and carry (30 A):	IEEE C37.90
Conducted immunity:	IEC 61000-4-6 / IEC 60255-22-6, class 3 (10 V RMS)
Surge:	IEC 61000-4-5 or IEC 60225-22-5, $1.2 / 50$ test up to level 4 (4 kV)
Burst disturbance (1 MH	z oscillatory): IEC 60255-22-1 up to 2.5 kV at 1 MHz damped
Fast transients:	ANSI/IEEE C37.90.1, EC61000-4-4 class $4,12 \mathrm{kV}, 5 \mathrm{kHz} / 4 \mathrm{kV}, 2.5 \mathrm{kHz}, 2 \mathrm{kV}$ on data control ports and inputs/outputs), IEC 60255-22-4
Radiated immunity:	IEC 61000-4-3 / IEC 60255-22-3 class 3 ($10 \mathrm{~V} / \mathrm{m}$) or IEEE C37.90.2 radiated RFI $(35 \mathrm{~V} / \mathrm{m})$
Power frequency disturbance:	
Radiated/conducted emissions:	issions: IEC 60255-25 / CISPR 11/22 class A
Insulation resistance:	IEC 60255-5
Dielectric strength:	IEC 60255-5, ANSI/IEEE C37.90
Dielectric across relay contacts:	
Electrostatic discharge: EN 61000-4-2, IEC 602	
Voltage dips/interruptio	ns/variations: IEC 61000-4-11 (30\% 1 cycle), IEC 60255-11
AC ripple:	IEC 61000-4-17 (standard)
Interruptions on DC power:	$\begin{aligned} & \text { wer: } \\ & \text { IEC 61000-4-29 } \end{aligned}$
Damped magnetic immunity:	
Impulse voltage withstand:	
Humidity cyclic:	EN/IEC 60255-5 (5 kV) IEC $60068-2-30,6$ days $55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$ (variant 1)
Environmental	
OPERATING TEMPERATURE	
Cold: Dry heat:	IEC 60068-2-1, 16 hours at $-40^{\circ} \mathrm{C}$ IEC 60068-2-2, 16 hours at $80^{\circ} \mathrm{C}$
OTHER ENVIRONMENTAL SPECIFICATIONS	
Altitude: Installation category: IP rating:	$\begin{aligned} & \text { up to } 2000 \mathrm{~m} \\ & \text { II } \\ & \text { IP30 for front, IP10 for back } \end{aligned}$
Approvals and Certification	
APPROVALS	
UL508 17th edition and C22.2 No.14-05: UL listed for the USA and Canada	
CERTIFICATION	
CE LVD 2006/95/EC: CE EMC 89/336/EEC:	EN/IEC 61010-1:2001 / EN60255-5:2000 EN 60255-26:2004-08

Typical C90 ${ }^{\text {Plus }}$ Fast Load Shed Order Codes:

Controller

Ordering

Notes for Fast Load Shedding:

Aggregator

[^1]Accessories for the C90 Plus

- MultiLink Ethernet Switch ML3K-F-HX-A-B-E-E-W-W-Y-Y-X-X-X
- Viewpoint Engineer VPE-1
- Viewpoint Maintenance VPM-1
- Viewpoint Monitoring IEC 61850 VP-1-61850
- 350 Feeder Protection 350-E-P5-G5-H-E-S-N-M-3E-D-N
- 339 Motor Protection 339-E-P5-G5-H-E-S-N-M-3E-D-N
- 35 Feeder Protection
- 60 Feedar Protection
- F60 Feeder Protection
- F650 Bay Controller
- G30 Generator Protection
- G60 Generator Protection

F35-NO3-VKH-F8L-H6P-MXX-PXX F60-N03-VKH-F8L-H6P-MXX-PXX F650-B-F-B-F-1-G-0-HI-6E G30-N03-VKH-F8L-H6P-M8L-PXX G60-N03-VKH-F8L-H6P-M8L-PXX

Digital Energy

650 Markland St.
Markham, ON
Canada L6C OM1
Toll Free (NA Only): 1-800-547-8629
Tel: 905-927-7070
Fax: 905-927-5098

GEDigitalEnergy.com

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council.
GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company. GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes. Copyright 2013, General Electric Company.

[^0]: Triggering a waveform on each breaker operation can identify changes in the length of time each part or mechanism in the breaker takes to perform its function.

[^1]: Front Panel: Can be either A or H (HMI is an option)
 Automation: C or A for Controller or Aggregator
 Communication Module: Only option A available
 AC Module: X - none only option

